![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(精选)01](http://img-preview.51jiaoxi.com/2/3/12734258/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(精选)02](http://img-preview.51jiaoxi.com/2/3/12734258/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练鲁教版(五四制)六年级数学下册第五章基本平面图形达标测试试卷(精选)03](http://img-preview.51jiaoxi.com/2/3/12734258/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题
展开六年级数学下册第五章基本平面图形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A. B. C. D.
2、如图,OM平分,,,则( )
A.96° B.108° C.120° D.144°
3、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
4、已知,则∠A的补角等于( )
A. B. C. D.
5、已知与满足,下列式子表示的角:①;②;③;④中,其中是的余角的是( )
A.①② B.①③ C.②④ D.③④
6、如图,∠BOC=90°,∠COD=45°,则图中互为补角的角共有( )
A.一对 B.二对 C.三对 D.四对
7、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
8、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°
9、在一幅七巧板中,有我们学过的( )
A.8个锐角,6个直角,2个钝角 B.12个锐角,9个直角,2个钝角
C.8个锐角,10个直角,2个钝角 D.6个锐角,8个直角,2个钝角
10、如图,已知C为线段AB上一点,M、N分别为AB、CB的中点,若AC=8cm,则MC+NB的长为( )
A.3cm B.4cm C.5cm D.6cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.
2、已知点C是线段AB的三等分点,点D是线段AC的中点.若线段,则______.
3、如图,已知数轴上点A、B、C所表示的数分别为a、b、c,C为线段AB的中点,且,如果原点在线段AC上,那么______.
4、已知,则它的余角是______.
5、已知的补角是,则的余角度数是______°.(结果用度表示)
三、解答题(5小题,每小题10分,共计50分)
1、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)如图,若∠AOB=120°,OC平分∠AOB,
①补全图形;
②填空:∠MON的度数为 .
(2)探求∠MON和∠AOB的等量关系.
2、如图,是直线上一点,是直角,平分.
(1)若,则__________;
(2)若,求__________(用含的式子表示);
(3)在的内部有一条射线,满足,试确定与的度数之间的关系,并说明理由.
3、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
4、已知:点O是直线AB上一点,过点O分别画射线OC,OE,使得.
(1)如图,OD平分.若,求的度数.请补全下面的解题过程(括号中填写推理的依据).
解:∵点O是直线AB上一点,
∴.
∵,
∴.
∵OD平分.
∴( ).
∴ °.
∵,
∴( ).
∵ ,
∴ °.
(2)在平面内有一点D,满足.探究:当时,是否存在的值,使得.若存在,请直接写出的值;若不存在,请说明理由.
5、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;
(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
2、B
【解析】
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
3、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
4、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
5、B
【解析】
【分析】
将每项加上判断结果是否等于90°即可.
【详解】
解:①∵+=90°,故该项是的余角;
②∵,
∴,
∴+=90°+,故该项不是的余角;
③∵,
∴+=90°,故该项是的余角;
④∵,
∴+=120°,故该项不是的余角;
故选:B.
【点睛】
此题考查了余角的有关计算,熟记余角定义,正确掌握角度的计算是解题的关键.
6、C
【解析】
【分析】
根据∠BOC=90°,∠COD=45°求出∠AOC=90°,∠BOD=45°,∠AOD=135°,进而得出答案.
【详解】
解:∵∠BOC=90°,∠COD=45°,
∴∠AOC=90°,∠BOD=45°,∠AOD=135°,
∴∠AOC+∠BOC=180°,∠AOD+∠COD=180°,∠AOD+∠BOD=180°,
∴图中互为补角的角共有3对,
故选:C.
【点睛】
本题考查了补角的定义,理解互为补角的两角之和为180°是解题的关键.
7、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
8、D
【解析】
【分析】
如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,
即可得到答案.
【详解】
解:假设两船相撞,如同所示,
根据两船的速度相同可得AC=BC,
∴∠CBA=∠CAB=90°-35°=55°,
∴乙的航向不能是北偏西35°,
故选:D.
【点睛】
此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.
9、B
【解析】
【分析】
根据一副七巧板图形,查出锐角,直角和钝角的个数即可.
【详解】
5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,
在一幅七巧板中根据12个锐角,9个直角,2个钝角.
故选择B.
【点睛】
本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.
10、B
【解析】
【分析】
设MC=xcm,则AM=(8﹣x)cm,根据M、N分别为AB、CB的中点,得到BM=(8﹣x)cm,NB=(4﹣x)cm,再求解MC+NB即可.
【详解】
解:设MC=xcm,则AM=AC﹣MC=(8﹣x)cm,
∵M为AB的中点,
∴AM=BM,
即BM=(8﹣x)cm,
∵N为CB的中点,
∴CN=NB,
∴NB,
∴MC+NB=x+(4﹣x)=4(cm),
故选:B.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、解题的关键是灵活运用数形结合思想.
二、填空题
1、105°或75°
【解析】
【分析】
分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.
【详解】
解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,
∵∠B=45°,∠BEF=90°,
∴∠CFO=∠BFE=45°,
∵∠DCO=60°,
∴∠COF=15°
∴∠AOC=90°+15°=105°;
②如图2,AB⊥CD于G,OA交DC于H,
∵∠A=45°,∠AGH=90°,
∴∠CHO=∠AHG=45°,
∵∠DCO=60°,
∴∠AOC=180°-60°-45°=75°;
故答案为:105°或75°.
【点睛】
此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.
2、12或6##6或12
【解析】
【分析】
根据点C是线段AB上的三等分点,分两种情况画图进行计算即可.
【详解】
解:如图,
∵点C是线段AB上的三等分点,
∴AB=3AC,
∵D是线段AC的中点,
∴AC=2AD=4,
∴AB=3×4=12;
如图,
∵D是线段AC的中点,
∴AC=2AD=4,
∵点C是线段AB上的三等分点,
∴BC=AC=2,AB=3BC,
∴AB=3AC=6,
则AB的长为12或6.
故答案为:12或6.
【点睛】
本题考查了两点间的距离,解决本题的关键是分两种情况画图计算.
3、2
【解析】
【分析】
根据中点的定义可知,再由原点在线段AC上,可判断,再化简绝对值即可.
【详解】
解:∵C为线段AB的中点,且,
∴,即,
∵原点在线段AC上,
∴,
;
故答案为:2.
【点睛】
本题考查了线段的中点和化简绝对值,解题关键是根据中点的定义和数轴确定.
4、
【解析】
【分析】
根据余角的定义求即可.
【详解】
解:∵,
∴它的余角是90°-=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
5、
【解析】
【分析】
根据180°-求得,根据即可求得答案
【详解】
解:∵的补角是,
∴
的余角为
故答案为:
【点睛】
本题考查了求一个角的补角和余角,角度进制转换,正确的计算是解题的关键.
三、解答题
1、 (1)①见解析;②
(2),见解析
【解析】
【分析】
(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;
②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;
(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .
(1)
①∵∠AOB=120°,OC平分∠AOB,
∴∠BOC=∠AOC=,
∵OM是∠AOC靠近OA的三等分线,
∴∠AOM=,
∵ON是∠BOC靠近OB的三等分线,
∴∠BON=,
在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,
补全图形;
②∵∠AOM=,∠BON=,∠AOB=120°,
∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,
∴∠MON的度数是80°,
故答案为:80°
(2)
∠MON=∠AOB.
∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.
∴∠AOM=,∠BON=,
∴ ,
,
,
.
【点睛】
本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.
2、 (1)30°
(2)
(3)5∠DOE-7∠AOF=270°
【解析】
【分析】
(1)先根据∠DOB与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE;
(2)先根据∠AOC与∠BOC的互余关系得出∠BOC,再根据角平分线的性质即可得出∠COE,再根据∠DOE与∠COE的互余关系即可得出答案;
(3)结合(2)把所给等式整理为只含所求角的关系式即可.
(1)
解:∵∠COD是直角,∠BOD=30°,
∴∠BOC=90°-∠BOD=60°,
∵OE平分∠BOC,
∴∠COE=30°,
(2)
∵,
∴,
∵OE平分∠BOC,
∴∠COE=∠BOE,
∵∠COD是直角,
∴∠DOE=90°-∠COE=,
(3)
∵
∴6∠AOF+3∠BOE=∠AOC-∠AOF,
∴7∠AOF+3∠BOE=∠AOC,
∵∠COD是直角,OE平分∠BOC,
∴∠BOE=90°-∠DOE,
由(2)可知,∠AOC=2∠DOE
∴7∠AOF+3(90°-∠DOE)=2∠DOE
∴7∠AOF+270°=5∠DOE,
∴5∠DOE-7∠AOF=270°.
【点睛】
本题考查角的计算;根据所求角的组成进行分析是解决本题的关键;应用相应的桥梁进行求解是常用的解题方法;注意应用题中已求得的条件.
3、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
4、(1)角平分线的定义;70;垂直的定义;DOC;EOC;160;(2)存在,的值为120°或144°或
【解析】
【分析】
(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;
(2)分三种情况讨论:①点D,C,E在AB上方时,②当点D在AB的下方,C,E在AB上方时,③如图,当D在AB上方,E,C在AB下方时,用含有α的式子表示出和∠BOE,由列式求解即可.
【详解】
解:(1)∵点O是直线AB上一点,
∴.
∵,
∴.
∵OD平分.
∴( 角平分线的定义 ).
∴ 70 °.
∵,
∴( 垂直的定义 ).
∵ DOC EOC ,
∴ 160 °.
故答案为:角平分线定义;70;垂直的定义;DOC;EOC;160;
(2)存在, 或144°或
①点D,C,E在AB上方时,如图,
∵,
∴
∵
∴
∵
∴
∴
②当点D在AB的下方,C,E在AB上方时,如图,
∵
∴
∵
∴
∴
∵
∴
∴
③如图,当D在AB上方,E,C在AB下方时,
同理可得:
,
解得:
综上,的值为120°或144°或
【点睛】
本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键.
5、(1)BD=1;(2)∠COB=20°
【解析】
【分析】
(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;
(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.
【详解】
解:(1)∵AB=BC,BC=6,
∴AB=×6=4,
∴AC=AB+BC=10,
∵点D是线段AC的中点,
∴AD=AC=5,
∴BD=AD-AB=5-4=1;
(2)∵OB平分∠AOD,∠AOD=100°,
∴∠AOB=∠AOD=50°,
∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,
∴∠AOC+∠AOC=50°,
∴∠AOC=30°,
∴∠BOC=∠AOC=20°.
【点睛】
本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题,共23页。试卷主要包含了已知点C,下列命题中,正确的有,下列四个说法等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共21页。试卷主要包含了已知,则的补角等于,下列说法正确的是,下列两个生活等内容,欢迎下载使用。
2021学年第五章 基本平面图形综合与测试同步达标检测题: 这是一份2021学年第五章 基本平面图形综合与测试同步达标检测题,共24页。试卷主要包含了如图,一副三角板,如图,D等内容,欢迎下载使用。