初中第五章 基本平面图形综合与测试精品同步训练题
展开六年级数学下册第五章基本平面图形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的补角的度数为( )
A. B. C. D.
2、如图,点A,B在线段EF上,点M,N分别是线段EA,BF的中点,EA:AB:BF=1:2:3,若MN=8cm,则线段EF的长为( )cm
A.10 B.11 C.12 D.13
3、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.两点之间,线段最短 B.两点确定一条直线
C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离
4、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
5、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
6、如图,B岛在A岛南偏西55°方向,B岛在C岛北偏西60°方向, C岛在A岛南偏东30°方向.从B岛看A,C两岛的视角∠ABC度数为( )
A.50° B.55° C.60° D.65°
7、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
8、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于( )
A.160° B.140° C.130° D.110°
9、上午10:00,钟面上时针与分针所成角的度数是( )
A.30° B.45° C.60° D.75°
10、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在的内部有3条射线、、,若,,,则__________.
2、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.
3、钟表4点36分时,时针与分针所成的角为______度.
4、如果∠A=55°30′,那么∠A的余角的度数等于______°.
5、45°30'=_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,点为线段上一点,点为的中点,且.求线段的长.
2、如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
3、如图1将线段AB,CD放置在直线l上,点B与点C重合,AB=10cm,CD=15cm,点M是线段AC的中点,点N是线段BD的中点.解答下列问题:
(1)MN=
(2)将图1中的线段AB沿DC延长线方向移动xcm至图2的位置.
①当x=7cm时,求MN的长.
②在移动的过程中,请直接写出MN,AB,CD之间的数量关系式.
4、如图,已知平面内有四个点A,B,C,D.
根据下列语句按要求画图.
(1)连接AB;作直线AD.
(2)作射线BC与直线AD交于点F.
观察图形发现,线段AF+BF>AB,得出这个结论的依据是: .
5、已知点A、B、C在同一条直线上,点M、N分别是AC、BC的中点,且AC=a,BC=b.
(1)如图①,若点C在线段AB上,a=4,b=6,求线段MN的长;
(2)若点C为线段AB上任一点,其它条件不变,请直接写出你的猜想结果,MN的长度为 (用含有a,b的代数式表示),不必说明理由;
(3)若点C在线段AB的延长线上,其它条件不变,请在图②中画出图形,试猜想MN的长度为 (用含有a,b的代数式表示,a>b),并说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
2、C
【解析】
【分析】
由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
【详解】
解:∵EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
∴MA=EA=x,NB=BFx,
∴MN=MA+AB+BN=x+2x+x=4x,
∵MN=16cm,
∴4x=8,
∴x=2,
∴EF=EA+AB+BF=6x=12,
∴EF的长为12cm,
故选C.
【点睛】
本题考查了两点间的距离.利用线段中点的性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
3、A
【解析】
【分析】
根据两点之间线段最短的性质解答.
【详解】
解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选:A.
【点睛】
此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.
4、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
5、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
6、D
【解析】
【分析】
根据B岛在A与C的方位角得出∠ABD=55°,∠CBE=60°,再根据平角性质求出∠ABC即可.
【详解】
解:过点B作南北方向线DE,
∵B岛在A岛南偏西55°方向,
∴∠ABD=55°,
∵B岛在C岛北偏西60°方向,
∴∠CBE=60°,
∴∠ABC=180°-∠ABD-∠CBE=180°-55°-60°=65°.
故选D.
【点睛】
本题考查方位角,平角,角的和差,掌握方位角,平角,角的和差是解题关键.
7、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
8、A
【解析】
【分析】
如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.
【详解】
解:∵∠AOB=∠COD=90°,∠BOC=20°,
∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.
故选:A.
【点睛】
此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
9、C
【解析】
【分析】
钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,
【详解】
10时整,时针与分针组成的角的度数是30°×2=60°.
故选:C.
【点睛】
本题要在了解钟面结构的基础上进行解答.
10、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
二、填空题
1、13
【解析】
【分析】
先用含∠BOE的代数式表示出∠AOB,进而表示出∠BOD,然后根据∠DOE=∠BOD-∠BOE即可得到结论.
【详解】
解:∵∠BOE=∠BOC,
∴∠BOC=4∠BOE,
∴∠AOB=∠AOC+∠BOC=52°+4∠BOE,
∴∠BOD=∠AOB=+∠BOE,
∴∠DOE=∠BOD-∠BOE=,
故答案为:13.
【点睛】
本题考查了角的和差倍分计算,正确的识别图形是解题的关键.
2、67.5
【解析】
【分析】
6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.
【详解】
解:∵6点45分时,分针指向9,时针在指向6与7之间,
∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.
故答案为:67.5.
【点睛】
本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.
3、78
【解析】
【分析】
因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.
【详解】
解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),
所以钟表上4时36分时,时针与分针的夹角可以看成:
时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.
因为钟表12个数字,每相邻两个数字之间的夹角为30°,
所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.
故在14时36分,时针和分针的夹角为78°.
故答案为:78.
【点睛】
本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.
4、34.5
【解析】
【分析】
根据余角定义解答.
【详解】
解:∵∠A=55°30′,
∴∠A的余角的度数为=34.5°,
故答案为:34.5.
【点睛】
此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.
5、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
三、解答题
1、14cm
【解析】
【分析】
根据点B为的中点和可求得CD的长,根据图中线段的关系即可求解.
【详解】
解:∵点B是的中点,,
∴,
又∵,
∴.
【点睛】
本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.
2、 (1)
(2),
(3)分钟时,∠MON的度数是40°
【解析】
【分析】
(1)根据角平分线的定义判断即可;
(2)①根据求解即可,②根据求解即可;
(3)分在的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于,在内部时可以判断,,则此情况不存在
(1)
① OM平分∠BOC,ON平分∠AOC,
当,时,,
,
②
故答案为:
(2)
①OM平分∠POB,ON平分∠POA,
②OM平分∠QOB,ON平分∠QOA,
故答案为:,
(3)
根据题意
OM平分∠POQ,
如图,当在的外部时,
MON的度数是40°
ON平分∠POA,
则旋转了
分
即分钟时,∠MON的度数是40°
如图,在的内部时,
即
此情况不存在
综上所述,分钟时,∠MON的度数是40°
【点睛】
本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.
3、 (1)12.5cm
(2)①12.5cm;②MN =(AB+CD)
【解析】
【分析】
(1)利用线段的中点的性质解决问题即可;
(2)①分别求出CM,CN,可得结论;
②利用x表示出MC,CN,可得结论.
(1)
解:如图1中,∵点M是线段AC的中点,点N是线段BD的中点,
∴BM=AB=5(cm),BN=CD=7.5(cm),
∴MN=BM+BN=12.5(cm),
故答案为:12.5cm;
(2)
①∵BC=7cm,AB=10cm,CD=15cm,
∴AC=17(cm),BD=22(cm),
∵点M是线段AC的中点,点N是线段BD的中点,
∴CM=AC=8.5(cm),BN=BD=11(cm),
∴CN=BN-BC=11-7=4(cm),
∴MN=MC+CN=12.5(cm);
②∵BC=x,
∴AC=AB+x,BD=x+CD,
∵点M是线段AC的中点,点N是线段BD的中点,
∴CM=AC=(AB+x),BN=BD=(x+CD),
∴MN=MC+BN-BC=(AB+x)+(x+CD)-x=(AB+CD).
【点睛】
本题考查线段的中点等知识,解题的关键是掌握线段的中点的性质,属于中考常考题型.
4、 (1)见解析;
(2)见解析,两点之间线段最短
【解析】
【分析】
(1)根据线段、直线的定义即可画出图形;
(2)根据射线的定义,可画出射线BC,再根据两点之间线段最短解决问题.
(1)
如图所示,线段AB与直线AD即为所求;
(2)
如上图所示,射线BC即为所求,
根据两点之间线段最短得AF+BF>AB,
故答案为:两点之间线段最短.
【点睛】
本题考查了画线段、直线、射线;两点之间线段最短,掌握线段、射线、直线的特点是解题的关键.
5、 (1)线段MN的长为5;
(2);
(3),图见解析,理由见解析.
【解析】
【分析】
(1)根据线段中点可得,,结合图形求解即可得;
(2)根据线段中点的性质可得,,结合图形求解即可得;
(3)根据题意,作出图形,然后根据线段中点的性质求解即可得.
(1)
解:∵ 点M、N分别是AC、BC的中点,
∴ ,,
∴ ;
(2)
解:∵ 点M、N分别是AC、BC的中点,,,
∴ ,,
∴ ,
故答案为:;
(3)
猜想:;理由如下:
如图所示:
∵ 点M、N分别是AC、BC的中点
∴
∴ ,
故答案为:.
【点睛】
题目主要考查线段中点及求线段长度,理解题意,结合图形进行分析是解题关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题,共23页。试卷主要包含了已知点C,下列命题中,正确的有,下列四个说法等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步测试题,共25页。试卷主要包含了已知,则∠A的补角等于,已知与满足,下列式子表示的角,在一幅七巧板中,有我们学过的等内容,欢迎下载使用。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试练习题,共24页。试卷主要包含了已知线段AB,上午10,如图,一副三角板,下列各角中,为锐角的是,如图所示,点E等内容,欢迎下载使用。

