


鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试复习练习题
展开这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试复习练习题,共23页。试卷主要包含了如图,D,如图,一副三角板,已知,则的补角等于等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了让一队学生站成一条直线,先让两名学生站好不动,其他学生依次往后站,要求目视前方只能看到各自前面的那名学生,这种做法运用的数学知识是( )
A.两点确定一条直线 B.两点之间,线段最短
C.射线只有一个端点 D.过一点有无数条直线
2、下列说法正确的是( )
A.正数与负数互为相反数 B.如果x2=y2,那么x=y
C.过两点有且只有一条直线 D.射线比直线小一半
3、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
4、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
5、如图,D、E顺次为线段上的两点,,C为AD的中点,则下列选项正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
6、经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是( )
A.两点确定一条直线 B.两点之间直线最短
C.两点之间线段最短 D.直线有两个端点
7、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )
A. B. C. D.
8、如图,已知线段n与挡板另一侧的四条线段a,b,c,d中的一条在同一条直线上,请借助直尺判断该线段是( )
A.a B.b C.c D.d
9、已知,则的补角等于( )
A. B. C. D.
10、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一种零件的图纸如图所示,若AB=10mm,BC=50mm,CD=20mm,则AD的长为 _____mm.
2、一个锐角的补角比它的余角的3倍少10°,则这个锐角度数为______°.
3、如图,直线CD经过点O,若OC平分∠AOB,则,依据是______.
4、如图所示,点C在线段上,,点D是线段的中点.若,则的长为________.
5、一个角比它的补角的3倍多40°,则这个角的度数为______.
三、解答题(5小题,每小题10分,共计50分)
1、数轴上不重合两点A,B.
(1)若点A表示的数为﹣3,点B表示的数为1,点M为线段AB的中点,则点M表示的数为 ;
(2)若点A表示的数为﹣3,线段AB中点N表示的数为1,则点B表示的数为 ;
(3)点O为数轴原点,点D表示的数分别是﹣1,点A从﹣5出发,以每秒1个单位长度的速度向正半轴方向移动,点C从﹣3同时出发,以每秒3个单位长度的速度向正半轴方向移动,点B为线段CD上一点.设移动的时间为t(t>0)秒,
①用含t的式子填空:点A表示的数为 ;点C表示的数为 ;
②当点O是线段AB的中点时,直接写出t的取值范围.
2、如图,已知线段a,b,c,用尺规求作一条线段AB,使得AB=a+b﹣2c.(不写作法,保留作图痕迹)
3、已知:如图1,是定长线段上一定点,两点分别从,出发以,的速度沿向左运动,运动方向如箭头所示(在线段上,在线段上)
(1)若,当点运动了,求的值;
(2)若点运动时,总有,试说明;
(3)如图2,已知,是线段所在直线上一点,且,求的值.
4、如图,C为线段AD上一点,B为CD的中点,,.
(1)图中共有______条线段;
(2)求AC的长;
(3)若点E是线段AC中点,求BE的长.
(4)若点F在线段AD上,且cm,求BF的长.
5、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.
(1)若∠BOC=40°,求∠AOF的大小.
(2)若∠COF=x°,求∠BOC的大小.
-参考答案-
一、单选题
1、A
【解析】
【分析】
两个学生看成点,根据两点确定一条直线的知识解释即可.
【详解】
∵两点确定一条直线,
∴选A.
【点睛】
本题考查了两点确定一条直线的原理,正确理解原理是解题的关键.
2、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
3、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
4、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
5、D
【解析】
【分析】
先利用中点的含义及线段的和差关系证明再逐一分析即可得到答案.
【详解】
解: C为AD的中点,
,则
故A不符合题意;
,则
同理: 故B不符合题意;
,则
同理: 故C不符合题意;
,则
同理: 故D符合题意;
故选D
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系即中点的含义证明”是解本题的关键
6、A
【解析】
【分析】
根据直线公理“两点确定一条直线”来解答即可.
【详解】
解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,此操作的依据是两点确定一条直线.
故选:A.
【点睛】
本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.
7、A
【解析】
【分析】
由三角板中直角三角尺的特征计算即可.
【详解】
∵和为直角三角尺
∴,
∴
∴
∴
故选:A.
【点睛】
本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.
8、B
【解析】
【分析】
利用直尺画出遮挡的部分即可得出结论.
【详解】
解:利用直尺画出图形如下:
可以看出线段b与n在一条直线上.
故选:B.
【点睛】
本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.
9、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
10、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
二、填空题
1、80
【解析】
【分析】
根据AD=AB+BC+CD即可得答案.
【详解】
解:由图可知:AD=AB+BC+CD=10+50+20=80(mm).
故答案为:80.
【点睛】
本题考查了线段的和差,掌握连接两点间的线段长叫两点间的距离是解本题的关键.
2、40
【解析】
【分析】
设这个锐角为x度,进而得到补角为(180-x)度,余角为(90-x)度,再根据题中等量关系即可求解.
【详解】
解:设锐角为x度,则它的补角为(180-x)度,余角为(90-x)度,
由题意可知:180-x=3(90-x)-10,
解出:x=40,
故答案为:40.
【点睛】
本题考查了补角及余角的定义,一元一次方程的解法,熟练掌握补角及余角的定义是解决本题的关键.
3、等角的补角相等
【解析】
【分析】
根据角平分线的定义和等角的补角相等解答即可.
【详解】
解:∵OC平分∠AOB,
∴∠AOC=∠BOC,
∵∠AOC+∠AOD=180°,∠BOC+∠BOD=180°,
∴∠AOD=∠BOD(等角的补角相等),
故答案为:等角的补角相等.
【点睛】
本题考查角平分线的定义、补角,熟知等角的补角相等是解答的关键.
4、
【解析】
【分析】
先求解 再利用线段的和差关系求解 再利用线段的中点的含义求解即可.
【详解】
解:
点D是线段的中点,
故答案为:
【点睛】
本题考查的是线段的和差关系,线段的中点的含义,掌握“线段的和差关系”是解本题的关键.
5、##145度
【解析】
【分析】
设这个角的补角的度数为 ,则这个角的度数为 ,根据“一个角比它的补角的3倍多40°,”列出方程,即可求解.
【详解】
解:设这个角的补角的度数为 ,则这个角的度数为 ,根据题意得:
,
解得: ,
∴这个角的度数为.
故答案为:
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,利用方程思想解答是解题的关键.
三、解答题
1、 (1)
(2)5
(3)①,;②且
【解析】
【分析】
(1)先根据两点距离公式求出AB=1-(-3)=1+3=4,根据点M为AB中点,求出AM,然后利用点A表示的数与AM长求出点M表示的数即可;
(2)根据点A表示的数为﹣3,线段AB中点N表示的数为1,求出AN=1-(-3)=1+3=4,根据点N为AB中点,可求AB=2AN=2×4=8,然后利用点A表示的数与AB的长求出点B表示的数即可;
(3)①用点A运动的速度×运动时间+起点表示数得出点A表示的数为,用点C运动的速度×运动时间+起点表示数得出点C表示的数为;
②点A与点B关于点O,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,列方程-3+3t+t=5-(-3)得出点B在CD上t=2,当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,t≠5,当点B与点D重合时,点A运动到1,列方程-5+t=1解方程即可.
(1)
解:∵点A表示的数为﹣3,点B表示的数为1,
∴AB=1-(-3)=1+3=4,
∵点M为AB中点,
∴AM=BM,
∴点M表示的数为:-3+2=-1,
故答案为:-1;
(2)
解:∵点A表示的数为﹣3,线段AB中点N表示的数为1,
∴AN=1-(-3)=1+3=4,
∵点N为AB中点,
∴AB=2AN=2×4=8,
∴点B表示的数为:-3+8=5,
故答案为:5;
(3)
①点A表示的数为,
点C表示的数为,
故答案为:;;
②点A与点B关于点O对称,点A从-5出发,点B此时对应的数为5,当点B与点C相遇时满足条件,
∴-3+3t+t=5-(-3),
∴t=2,
当点A与点B相遇时点A在点O处,三点A、O、B重合,此时没有中点,
∴t≠5,
当点B与点D重合时,点A运动到1,-5+t=1,
∴t=6,
∴当点O是线段AB的中点时, t的取值范围为2≤t≤6,且t≠5.
【点睛】
本题考查数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程,掌握数轴表示数,数轴上两点距离,线段中点,动点问题,列解一元一次方程是解题关键.
2、见解析
【解析】
【分析】
在射线AM上截取线段,,在线段CD上截取线段,则线段AB即为所求作.
【详解】
解:如图,在射线AM上截取线段,,在线段CD上截取线段,线段AB即为所求作.
【点睛】
题目主要考查作一条线段等于已知线段的和差,熟练掌握线段的作法是解题关键.
3、 (1)2cm
(2)见解析
(3)或
【解析】
【分析】
(1)根据运动的时间为2s,结合图形可得出,,即可得出,再由,即得出AC+MD的值;
(2)根据题意可得出,.再由,可求出,从而可求出,即证明;
(3)①分类讨论当点在线段上时、②当点在线段的延长线上时和③当点在线段的延长线上时,根据线段的和与差结合,即可求出线段MN和AB的等量关系,从而可求出的值,注意舍去不合题意的情形.
(1)
∵时间时,
,,
∴
;
(2)
∵,,
又∵,
∴,
∴,
∴,
∴;
(3)
①如图,当点在线段上时,
∵,
∴,
∴,
∴;
②如图,当点在线段的延长线上时,
∵,
∴,
∴,
③如图,当点在线段的延长线上时,
,这种情况不可能,
综上可知,的值为或.
【点睛】
本题考查线段的和与差、与线段有关的动点问题.利用数形结合和分类讨论的思想是解答本题的关键.
4、 (1)6
(2)8 cm
(3)6 cm
(4)5 cm或1 cm
【解析】
【分析】
(1)根据线段的定义,写出所有线段即可;
(2)根据为的中点可得,进而根据即可求解;
(3)点E是线段AC中点,则,根据即可求解;
(4)根据题意,根据点在点的左侧和右侧两种情形分类讨论,进而根据线段的和差关系求解即可.
(1)
解:图中的线段有共6条
故答案为:6
(2)
为的中点,
cm
(3)
点E是线段AC中点,则,
cm
(4)
若点F在线段AD上,,
则分两种情况讨论
①当在点的左侧时,
cm,
BF cm,
②当在点的右侧时,
cm,
BF
【点睛】
本题考查了线段的数量问题,线段的和差计算,线段中点的性质,数形结合是解题的关键.
5、(1);(2)
【解析】
【分析】
(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;
(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.
【详解】
(1)∵∠EOC=90°,∠BOC=40°
∴
∵OF平分∠AOE
∴ ;
(2)∵∠COF=x°,∠EOC=90°
∴
∵OF平分∠AOE
∴
∴.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.
相关试卷
这是一份数学鲁教版 (五四制)第五章 基本平面图形综合与测试课后练习题,共21页。试卷主要包含了已知与满足,下列式子表示的角,已知线段AB,延长线段至点,分别取等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共21页。试卷主要包含了若,则的补角的度数为,下列说法中正确的是等内容,欢迎下载使用。
这是一份数学六年级下册第五章 基本平面图形综合与测试课时作业,共29页。试卷主要包含了下列四个说法等内容,欢迎下载使用。