鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题
展开六年级数学下册第五章基本平面图形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
2、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
3、下列说法正确的是( )
A.正数与负数互为相反数 B.如果x2=y2,那么x=y
C.过两点有且只有一条直线 D.射线比直线小一半
4、如图,点N为线段AM上一点,线段.第一次操作:分别取线段AM和AN的中点,;第二次操作:分别取线段和的中点,;第三次操作:分别取线段和的中点,;……连续这样操作,则第十次操作所取两个中点形成的线段的长度为( )
A. B. C. D.
5、平面上有三个点A,B,C,如果,,,则( )
A.点C在线段AB的延长线上 B.点C在线段AB上
C.点C在直线AB外 D.不能确定
6、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
7、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
8、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
9、下列图形中,能用,,三种方法表示同一个角的是( )
A. B.
C. D.
10、上午8:30时,时针和分针所夹锐角的度数是( )
A.75° B.80° C.70° D.67.5°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).
2、点A,B,C在同一条直线上,,.则____________.
3、计算:________°.
4、如图,在灯塔O处观测到轮船A位于北偏西53°的方向,同时轮船B在南偏东17°的方向,那么______°.
5、如图,已知点是直线上的一点,,.
(1)当时,的度数为__________;
(2)当比的余角大,的度数为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,平分,平分.若,.
(1)求出的度数;
(2)求出的度数,并判断与的数量关系是互补还是互余.
2、如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)
求作:线段.
3、已知∠AOB=90°,∠COD=80°,OE是∠AOC的角平分线.
(1)如图1,若∠AOD=∠AOB,则∠DOE=________;
(2)如图2,若OF是∠AOD的角平分线,求∠AOE−∠DOF的值;
(3)在(1)的条件下,若射线OP从OE出发绕O点以每秒12°的速度逆时针旋转,射线OQ从OD出发绕O点以每秒8°的速度顺时针旋转,若射线OP、OQ同时开始旋转t秒(0<t<)后得到∠COP=∠AOQ,求t的值.
4、如图,点为直线上一点,过点作射线,使.将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分.求的度数.
(2)将图1中的三角板绕点以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为多少?(直接写结果,不写步骤)
5、(1)如图1,已知线段a、b(),用无刻度的直尺和圆规画一条线段MN,使它等于(保留作图痕迹,不要求写作法).
(2)如图2,已知点C在线段AB上,其中,,点E是AC的中点,点F在线段CB上,且,求线段EF的长度.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
2、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
3、C
【解析】
【分析】
A中互为相反数的两个数为一正一负;B中两个数的平方相等,这两个数可以相等也可以互为相反数;C中过两点有且只有一条直线;D中射线与直线无法比较长度.
【详解】
解:A中正数负数分别为,,错误,不符合要求;
B中,可得或,错误,不符合要求;
C中过两点有且只有一条直线 ,正确,符合要求;
D中射线与直线都可以无限延伸,无法比较长度,错误,不符合要求;
故选C.
【点睛】
本题考查了相反数,直线与射线.解题的关键在于熟练掌握相反数,直线与射线等的定义.
4、A
【解析】
【分析】
根据线段中点定义先求出M1N1的长度,再由M1N1的长度求出M2N2的长度,再由M2N2的长度求出M2N2的长度,从而找到规律,即可求出MnNn的结果.
【详解】
解:∵线段MN=20,线段AM和AN的中点M1,N1,
∴M1N1=AM1-AN1
∵线段AM1和AN1的中点M2,N2;
∴M2N2=AM2-AN2
∵线段AM2和AN2的中点M3,N3;
∴M3N3=AM3-AN3
.......
∴
∴
故选:A.
【点睛】
本题考查了与线段中点有关的线段的和差,根据线段中点的定义得出是解题关键.
5、B
【解析】
【分析】
本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.
【详解】
解:如图:
∵AB=8,AC=5,BC=3,
从图中我们可以发现AC+BC=AB,
所以点C在线段AB上.
故选:B.
【点睛】
本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.
6、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
7、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
8、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
9、A
【解析】
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
10、A
【解析】
【分析】
根据钟面平均分成12份,可得每份的度数;根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:钟面平均分成12份,钟面每份是30°,上午8:30时时针与分针相距2.5份,
此时时钟的时针与分针所夹的角(小于平角)的度数是30°×2.5=75°.
故选:A.
【点睛】
本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.
二、填空题
1、①③④
【解析】
【分析】
根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.
【详解】
解:多项式的次数为3,故①符合题意;
如图,,但OP不平分∠AOB;
故②不符合题意,
如图,
当时,
满足的整数x的值有,有5个;故③符合题意;
,
为关于x的一元一次方程,则
,故④符合题意;
综上:符合题意的有①③④
故答案为:①③④
【点睛】
本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.
2、4cm或2cm##2cm或4cm
【解析】
【分析】
考虑到A、B、C三点之间的位置关系不确定,需要分成三种情况进行讨论:①当点C在线段AB上时;②当点C在线段AB的延长线上时;③当点C在线段BA的延长线上时;根据题意画出的图形进行解答即可.
【详解】
解:①当点C在线段AB上时,如图所示:,
又∵,,
∴;
②当点C在线段AB的延长线上时,如图所示:,
又∵,,
∴.
③当点C在线段BA的延长线上时,
∵,,
∴这种情况不成立,舍去;
∴线段或.
故答案为:或.
【点睛】
本题考查了线段间的和差及分类讨论思想,理解题意,作出相应图形进行求解是解题关键.
3、60.3
【解析】
【分析】
根据1=()°先把18化成0.3°即可.
【详解】
∵
∴18=18=0.3°
∴6018=60.3
故:答案为60.3.
【点睛】
本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.
4、144
【解析】
【分析】
先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.
【详解】
解:如图,
∵在灯塔O处观测到轮船A位于北偏西53°的方向,
∴∠AOC=53°,
∴∠AOD=90°-53°=37°,
∵轮船B在南偏东17°的方向,
∴∠EOB=17°,
∴∠AOB=37°+90°+17°=144°,
故答案为:144.
【点睛】
此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.
5、 45° 20°
【解析】
【分析】
(1)根据∠COA=∠AOE-∠COE求解即可;
(2)设∠BOE=x,则∠BOE的余角为90°-x,然后求出∠COF和∠AOC,继而得到∠AOF=50°,再根据求得∠AOE和∠BOE,根据∠COF=∠COE-∠FOE即可求解.
【详解】
解:(1)∵∠BOE=15°,
∴∠AOE=165°,
∵∠COE=120°,
∴∠COA=∠AOE-∠COE =45°,
故答案为:45°;
(2)设∠BOE=x,
则∠BOE的余角为90°-x,
∵∠FOE比∠B0E的余角大40°,
∴∠FOE=90°-x+40°=130°-x,
∵∠COE=120°,
∴∠COF=∠COE-∠FOE=120°-(130°-x)=x-10°,
∠AOC=180°-∠COE-∠BOE=180°-120°-x=60°-x,
∴∠AOF=∠AOC+∠COF=(60°-x)+(x-10°)=50°,
∵,
∴∠AOE=3∠AOF=150°,
∴∠BOE=180°-∠AOE=180°-150°=30°,即x=30°,
∴∠COF=∠COE-∠FOE= x-10°=30°-10°=20°
故答案为:20°.
【点睛】
本题考查余角、补角的计算,解题的关键是熟知相关知识点.
三、解答题
1、 (1)
(2),互补
【解析】
【分析】
(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;
(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.
(1)
解:∵平分,,
∴,又∵,
∴;
(2)
解:∵平分,平分,,
∴,,
∴,
∴,
∴与的数量关系是互补.
【点睛】
本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
2、见解析
【解析】
【分析】
作射线AM,在射线AM,上顺次截取AC=a,CD=a,再反向截取DB=b,进而可得线段AB.
【详解】
解:如图,线段AB即为所求作的线段.
【点睛】
本题考查尺规作图—线段的和差,是基础考点,掌握相关知识是解题关键.
3、 (1)25°
(2)∠AOE-∠DOF=40°
(3)t的值为秒或秒
【解析】
【分析】
(1)由题意得∠AOD=30°,再求出∠AOE=55°,即可得出答案;
(2)先由角平分线定义得∠AOF=∠DOF=∠AOD,∠AOE=∠AOC,再证∠AOE-∠AOF=∠COD,即可得出答案;
(3)分三种情况:①当射线OP、OQ在∠AOC内部时,②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,③当射线OP、OQ在∠AOC外部时,由角的关系,列方程即可求解.
(1)
解:(1)∵∠AOB=90°,
∴∠AOD=∠AOB=30°,
∵∠COD=80°,
∴∠AOC=∠AOD+∠COD=30°+80°=110°,
∵OE平分∠AOC,
∴∠AOE=∠COE=∠AOC=55°,
∴∠DOE=∠AOE-∠AOD=55°-30°=25°;
(2)
解:∵OF平分∠AOD,
∴∠AOF=∠DOF=∠AOD,
∵OE平分∠AOC,
∴∠AOE=∠AOC,
∴∠AOE-∠AOF=∠AOC-∠AOD=(∠AOC-∠AOD)=∠COD,
又∵∠COD=80°,
∴∠AOE-∠DOF=×80°=40°;
(3)
解:分三种情况:
①当射线OP、OQ在∠AOC内部时,即0<t≤时,
由题意得:∠POE=(12t)°,∠DOQ=(8t)°,
∴∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠AOD-∠DOQ=(30-8t)°,
∵∠COP=∠AOQ,
∴55-12t=(30-8t),
解得:t=(舍去);
②当射线OP在∠AOC内部时,射线OQ在∠AOC外部时,即<t≤时,
则∠COP=∠COE-∠POE=(55-12t)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴55-12t=(8t-30),
解得:t=;
③当射线OP、OQ在∠AOC外部时,即<t<时,
则∠COP=∠POE-∠COE=(12t-55)°,∠AOQ=∠DOQ-∠AOD=(8t-30)°,
∴12t-55=(8t-30),
解得:t=;
综上所述,t的值为秒或秒.
【点睛】
本题考查了角的计算、角的和差、角平分线的定义等知识,正确的识别图形是解题的关键.
4、 (1)
(2)直线恰好平分锐角,则的值为s或s.
【解析】
【分析】
(1)先利用角平分线的定义求解再利用 从而可得答案;
(2)分两种情况讨论:如图,当直线恰好平分锐角,记为上的点,求解线段旋转的角度如图,当平分时,求解旋转的角度为: 从而可得答案.
(1)
解:平分
(2)
解:如图,当直线恰好平分锐角,记为上的点,
,
如图,当平分时,
此时转的角度为:
综上:直线恰好平分锐角,则的值为s或s.
【点睛】
本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.
5、(1)见解析;(2)4cm
【解析】
【分析】
(1)先画一条射线AP,依次截取AB=BN=a,AM=b,即可得到所求作的线段;
(2)利用,,求出AB,根据点E是AC的中点,分别求出CE、CF的长,相加即可得到线段EF的长度.
【详解】
解:(1)线段MN即为所求作的线段;
(2)∵,,
∴AB=AC+BC=10cm,
∵点E是AC的中点,
∴,
∵,
∴
∴EF=CE+CF=4cm.
【点睛】
此题考查了线段的和差作图,线段中点的有关计算,正确掌握作线段等于已知线段的方法及线段中点的定义是解题的关键.
初中第五章 基本平面图形综合与测试课时练习: 这是一份初中第五章 基本平面图形综合与测试课时练习,共29页。试卷主要包含了如图,OM平分,,,则,如图所示,B等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共19页。试卷主要包含了在9,下列各角中,为锐角的是等内容,欢迎下载使用。
初中数学第五章 基本平面图形综合与测试精品练习: 这是一份初中数学第五章 基本平面图形综合与测试精品练习,共21页。试卷主要包含了如图,点在直线上,平分,,,则,若,则的补角的度数为,在一幅七巧板中,有我们学过的,下列现象等内容,欢迎下载使用。

