数学六年级下册第五章 基本平面图形综合与测试优秀同步达标检测题
展开六年级数学下册第五章基本平面图形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )
A. B. C. D.
2、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
3、如图,点O在CD上,OC平分∠AOB,若∠BOD=153°,则∠DOE的度数是( )
A.27° B.33° C.28° D.63°
4、已知,则∠A的补角等于( )
A. B. C. D.
5、如图,射线OA所表示的方向是( )
A.西偏南30° B.西偏南60° C.南偏西30° D.南偏西60°
6、已知,则的补角等于( )
A. B. C. D.
7、上午10:00,钟面上时针与分针所成角的度数是( )
A.30° B.45° C.60° D.75°
8、用度、分,秒表示22.45°为( )
A.22°45′ B.22°30′ C.22°27′ D.22°20′
9、一个角的度数为54°12',则这个角的补角度数等于( )
A.125°48' B.125°88' C.135°48' D.136°48'
10、钟表10点30分时,时针与分针所成的角是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则它的余角是______.
2、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.
3、______°.
4、同一直线上有两条线段(A在B的左边,C在D的左边),M,N分别是的中点,若,,则_________.
5、如图,将三个形状、大小完全一样的正方形的一个顶点重合放置,若,,则_____.
三、解答题(5小题,每小题10分,共计50分)
1、若关于x,y的多项式的值与字母x取值无关.
(1)求的值;
(2)已知∠AOB=m°,在∠AOB内有一条射线OP,恰好把∠AOB分成1:n的两部分,求∠AOP的度数.
2、如图,平分,平分.若,.
(1)求出的度数;
(2)求出的度数,并判断与的数量关系是互补还是互余.
3、如图①,将一副常规直角三角尺的直角顶点叠放在一起,,.解答下列问题.
(1)若∠DCE=35°24',则∠ACB= ;若∠ACB=115°,则∠DCE= ;
(2)当∠DCE=α时,求∠ACB的度数,并直接写出∠DCE与∠ACB的关系;
(3)在图①的基础上作射线BC,射线EC,射线DC,如图②,则与∠ECB互补的角有 个.
4、如图,将一副直角三角板的直角顶点C叠放在一起.
(1)若,则______;若,则______;
(2)猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
(3)若,求∠DCE的度数.
5、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)如图,若∠AOB=120°,OC平分∠AOB,
①补全图形;
②填空:∠MON的度数为 .
(2)探求∠MON和∠AOB的等量关系.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:9:30时针与分针相距3.5份,每份的度数是30°,
在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.
故选:A.
【点睛】
本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.
2、B
【解析】
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
3、D
【解析】
【分析】
先根据补角的定义求出∠BOC的度数,再利用角平分线定义即可求解.
【详解】
解:∵∠BOD=153°,
∴∠BOC=180°-153°=27°,
∵CD为∠AOB的角平分线,
∴∠AOC=∠BOC=27°,
∵∠AOE=90°,
∴∠DOE=90°-∠AOC=63°
故选:D.
【点睛】
本题考查了平角的定义,余角和补角,角平分线定义,求出∠BOC的度数是解题的关键.
4、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
5、D
【解析】
【详解】
解:,
根据方位角的概念,射线表示的方向是南偏西60度.
故选:D.
【点睛】
本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
6、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
7、C
【解析】
【分析】
钟面一周为360°,共分12大格,每格为360÷12=30°,10时整,时针在10,分针在12,相差2格,组成的角的度数就是30°×2=60°,
【详解】
10时整,时针与分针组成的角的度数是30°×2=60°.
故选:C.
【点睛】
本题要在了解钟面结构的基础上进行解答.
8、C
【解析】
【分析】
将化成即可得.
【详解】
解:∵,
∴,
故选:C.
【点睛】
题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.
9、A
【解析】
【分析】
由计算求解即可.
【详解】
解:∵
∴这个角的补角度数为
故选A.
【点睛】
本题考查了补角.解题的关键在于明确.
10、B
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:10点30分时的时针和分针相距的份数是4.5,
10点30分时的时针和分针所成的角的度数为30°×4.5=135°,
故选:B.
【点睛】
本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.
二、填空题
1、
【解析】
【分析】
根据余角的定义求即可.
【详解】
解:∵,
∴它的余角是90°-=,
故答案为:.
【点睛】
本题考查了余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.
2、6或22##22或6
【解析】
【分析】
根据两点间的距离,分情况讨论C点的位置即可求解.
【详解】
解:∵,
∴点C不可能在A的左侧,
如图1,当C点在A、B之间时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=3k,BD=k,
∴CD=k+k=k,
∵CD=11,
∴k=11,
∴k=2,
∴AB=6;
如图2,当C点在点B的右侧时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=k,BD=k,
∴CD=k-k=k,
∵CD=11,
∴k=11,
∴k=22,
∴AB=22;
∴综上所述,AB=6或22.
【点睛】
本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.
3、42.6
【解析】
【分析】
根据角度进制的转化求解即可,.
【详解】
解:
42.6
故答案为:42.6
【点睛】
本题考查了角度进制的转化,掌握角度进制是解题的关键.
4、17
【解析】
【分析】
根据A在B的左边,C在D的左边,M,N分别是的中点,得出AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x, 得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.
【详解】
解:∵A在B的左边,C在D的左边,M,N分别是的中点,
∴AM=BM,CN=DN,
当点B在点C的右边时满足条件,分三种情况:
当点B在NM上,设AM=BM=x,
∴BN=MN-BM=5-x,
∴CN=BC+BN=7+5-x=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当MN在BC上,设AM=BM=x,
∴BN=x-5,CM=7-x,
∴CN=CM+MN=7-x+5=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当点C在MN上,设AM=BM=x,
∴MC=BM-BC=x-7,
∴CN=DN=MN-MC=5-(x-7)=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
综合得AD=17.
故答案为17.
【点睛】
本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.
5、
【解析】
【分析】
首先求得和∠EAC,然后根据即可求解.
【详解】
解:∵将三个形状、大小完全一样的正方形的一个顶点重合放置,
∠GAD=∠EAB=90°,
,,
∴
∴
故答案为:
【点睛】
本题考查的是角的和差关系,角度的加法运算,掌握“角的和差关系与角度的加法运算”是解本题的关键.
三、解答题
1、 (1)116
(2)40°或80°
【解析】
【分析】
(1)不含x的项,所以40−m=0,−n+2=0,然后解出m、n即可;
(2)把m和n代入,分∠AOP:∠BOP=1:2和∠AOP:∠BOP=2:1两种情况讨论,列式计算即可.
(1)
解:由题可知:40−m=0,−n+2=0,
解得:m=120,n=2,
∴m−n2=120−22=116;
(2)
解:由(1)得:m=120,n=2,
∴∠AOB=120°,
如图①,当∠AOP:∠BOP=1:2时,
∠AOP=∠AOB=40°;
如图②,当∠AOP:∠BOP=2:1时,
∠AOP=∠AOB=80°;
综上:∠AOP=40°或80°.
.
【点睛】
本题考查了整式的加减,一元一次方程的解,以及角的运算,熟练掌握运算法则是解本题的关键.
2、 (1)
(2),互补
【解析】
【分析】
(1)先根据角平分线的定义求出∠BOC的度数,然后可求的度数;
(2)先根据角平分线的定义求出∠COD、∠COE的度数,然后可求的度数,进而可判断与的数量关系.
(1)
解:∵平分,,
∴,又∵,
∴;
(2)
解:∵平分,平分,,
∴,,
∴,
∴,
∴与的数量关系是互补.
【点睛】
本题主要考查角平分线的定义和补角的定义,关键是根据补角的定义解答.如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.
3、 (1);
(2),与互为补角
(3)5
【解析】
【分析】
(1)根据三角板中的特殊角,以及互余的意义可求答案;
(2)方法同(1)即可得出结论;
(3)利用直角的意义,互补的定义可得出结论.
(1)
解:,
,
;
,,
,
,
故答案为:;;
(2)
解:,
,
;
,即与互补;
(3)
解:由图可知,
,
与互补的角有5个;
故答案为:5.
【点睛】
本题考查三角板的特殊内角,补角的定义及余角的定义,解题的关键是掌握互余和互补的定义和三角板的内角度数.
4、 (1)145°,30°
(2)
(3)
【解析】
【分析】
(1)根据求解即可;
(2)(3)方法同(1)
(1)
解:∵,
∴
故答案为:;
(2)
,理由如下,
,
(3)
,,
【点睛】
本题考查了三角尺中角度的计算,找到关系式是解题的关键.
5、 (1)①见解析;②
(2),见解析
【解析】
【分析】
(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;
②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;
(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .
(1)
①∵∠AOB=120°,OC平分∠AOB,
∴∠BOC=∠AOC=,
∵OM是∠AOC靠近OA的三等分线,
∴∠AOM=,
∵ON是∠BOC靠近OB的三等分线,
∴∠BON=,
在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,
补全图形;
②∵∠AOM=,∠BON=,∠AOB=120°,
∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,
∴∠MON的度数是80°,
故答案为:80°
(2)
∠MON=∠AOB.
∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.
∴∠AOM=,∠BON=,
∴ ,
,
,
.
【点睛】
本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.
数学六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份数学六年级下册第五章 基本平面图形综合与测试课后作业题,共25页。试卷主要包含了图中共有线段,在下列生活,如图,一副三角板等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品习题,共27页。试卷主要包含了上午8等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练,共25页。试卷主要包含了下列各角中,为锐角的是,如图所示,由A到B有①,下列说法正确的是等内容,欢迎下载使用。