初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题
展开六年级数学下册第五章基本平面图形定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )
A. B.
C. D.
2、下列说法正确的是( )
A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角
C.直角和它的的补角相等 D.锐角和钝角互补
3、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
4、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )
A.①② B.①③ C.②④ D.③④
5、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )
A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段最短
6、将三角尺与直尺按如图所示摆放,下列关于∠α与∠β之间的关系一定正确的是( )
A.∠α=∠β B.∠α=∠β C.∠α+∠β=90° D.∠α+∠β=180°
7、如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于( )
A. B. C. D.
8、如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,那么线段AC的长为( )
A.10cm B.2cm C.10或2cm D.无法确定
9、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对 B.2对 C.3对 D.4对
10、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.
2、如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1,得到线段P1Q1,则线段P1Q1=_____;再分别取线段AP1和AQ1的中点P2,Q2,得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3,得到线段P3Q3;连续这样操作2021次,则每次的两个中点所形成的所有线段之和P1Q1+P2Q2+P3Q3+…+P2021Q2021=_____.
3、如果∠A=55°30′,那么∠A的余角的度数等于______°.
4、已知∠1的余角等于,那么∠1的补角等于______.
5、如图,点,是直线上的两点,点,在直线上且点在点的左侧,点在点的右侧,,.若,则____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在直线上顺次取A、B、C三点,使得AB=40cm,BC=280cm.点P、点Q分别由A点、B点同时出发向点C运动,运用时间为t(单位:s),点P的速度为3cm/s,点Q的速度为1cm/s
(1)请求出线段AC的长;
(2)若点D是线段AC的中点,请求出线段BD的长;
(3)请求出点P出发多少秒后追上点Q?
(4)请计算出点P出发多少秒后,与点Q的距离是20cm?
2、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
3、如图(1),直线、相交于点,直角三角板边落在射线上,将三角板绕点逆时针旋转180°.
(1)如图(2),设,当平分时,求(用表示)
(2)若,
①如图(3),将三角板旋转,使落在内部,试确定与的数量关系,并说明理由.
②若三角板从初始位置开始,每秒旋转5°,旋转时间为,当与互余时,求的值.
4、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
5、已知线段a、b(如图),用直尺和圆规在方框内按以下步骤作图:(保留作图痕迹,不要求写出作法和结论)
①画射线OP;
②在射线OP上顺次截取OA=a,AB=a;
③在线段OB上截取BC=b;
④作出线段OC的中点D.
(1)根据以上作图可知线段OC= ;(用含有a、b的式子表示)
(2)如果OD=2厘米,CD=2AC,那么线段BC= 厘米.
-参考答案-
一、单选题
1、B
【解析】
【分析】
先求解利用角平分线的定义再求解从而可得答案.
【详解】
解:
平分
故选B
【点睛】
本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.
2、C
【解析】
【分析】
根据余角和补角的概念判断即可.
【详解】
解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;
B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;
C、根据直角的补角是直角.所以本说法符合题意;
D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;
故选:C.
【点睛】
本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.
3、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
4、D
【解析】
【分析】
分别利用直线的性质以及线段的性质分析得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.
5、D
【解析】
【分析】
根据题意可知,原因为两点之间线段最短,据此分析即可
【详解】
解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短
故选D
【点睛】
本题考查了线段的性质,掌握两点之间线段最短是解题的关键.
6、C
【解析】
【分析】
如果两个角的和等于90°(直角),就说这两个角互为余角,由题意可知∠α与∠β互余,即∠α+∠β=90°.
【详解】
解:∠α+∠β=180°﹣90°=90°,
故选:C.
【点睛】
本题主要考查了余角,如果两个角的和等于90°(直角),就说这两个角互为余角.
7、A
【解析】
【分析】
由三角板中直角三角尺的特征计算即可.
【详解】
∵和为直角三角尺
∴,
∴
∴
∴
故选:A.
【点睛】
本题考查了三角板中的角度运算,直角三角板的角度分别为90°,45°,45°和90°,60°,30°.
8、C
【解析】
【分析】
分AC=AB+BC和AC=AB-BC,两种情况求解.
【详解】
∵A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,
当AC=AB+BC时,
AC=6+4=10;
当AC=AB-BC时,
AC=6-4=2;
∴AC的长为10或2cm
故选C.
【点睛】
本题考查了线段的和差计算,分AB,BC同向和逆向两种情形是解题的关键.
9、B
【解析】
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
10、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
二、填空题
1、67.5
【解析】
【分析】
6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.
【详解】
解:∵6点45分时,分针指向9,时针在指向6与7之间,
∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.
故答案为:67.5.
【点睛】
本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.
2、 5
【解析】
【分析】
根据线段中点定义分别求出,据此得到规律代入计算即可.
【详解】
解:∵线段AP和AQ的中点为P1,Q1,
∴,
∵AP>AQ,
∴P1Q1==5;
∵线段AP1和AQ1的中点为P2,Q2,
∴,
∴,
同理:,,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021
=
=
设①,
则②,
①-②得,
∴,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=,
故答案为:5,.
【点睛】
此题考查了数轴上两点之间的距离公式,线段中点的定义,有理数的混合运算,规律的总结与计算,根据线段中点定义列得规律是解题的关键.
3、34.5
【解析】
【分析】
根据余角定义解答.
【详解】
解:∵∠A=55°30′,
∴∠A的余角的度数为=34.5°,
故答案为:34.5.
【点睛】
此题考查了余角的定义:相加为90°的两个角互为余角,熟记余角定义是解题的关键.
4、135°20′
【解析】
【分析】
求出∠1的度数,再求∠1的补角即可.
【详解】
解:∵∠1的余角等于,
∴∠1=90°-45°20′=44°40′,
∴∠1的补角为180°-∠1=180°-44°40′=135°20′,
故答案为:135°20′.
【点睛】
本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.
5、6或22##22或6
【解析】
【分析】
根据两点间的距离,分情况讨论C点的位置即可求解.
【详解】
解:∵,
∴点C不可能在A的左侧,
如图1,当C点在A、B之间时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=3k,BD=k,
∴CD=k+k=k,
∵CD=11,
∴k=11,
∴k=2,
∴AB=6;
如图2,当C点在点B的右侧时,
设BC=k,
∵AC:CB=2:1,BD:AB=3:2,
则AC=2k,AB=k,BD=k,
∴CD=k-k=k,
∵CD=11,
∴k=11,
∴k=22,
∴AB=22;
∴综上所述,AB=6或22.
【点睛】
本题考查了两点间的距离,线段的数量关系,以及一元一次方程的应用,分类讨论是解答本题的关键.
三、解答题
1、 (1)320cm
(2)120cm
(3)20秒
(4)10或30秒
【解析】
【分析】
(1)根据AB+BC=AC,已知AB=40cm,BC=280cm,代入数据,即可解得线段AC的长;
(2)根据线段的中点定理可得,而BD=AD﹣AB,即可求出线段BD的长;
(3)这属于追击问题,设点P出发t秒后追上点Q,即当追上时有,可方程 3t=t+40,即可得本题之解;
(4)设点P出发t秒,点Q的距离是20cm;分两种情况,①是当P在Q的左侧时,3t=40+t+20;②是当P在Q的右侧时,3t=40+t+20,分别解这两个方程,即可得出本题答案.
(1)
解:∵AB+BC=AC,
∴AC=320cm;
(2)
解:∵D是线段AC的中点,
∴,
∴BD=AD﹣AB=120cm;
(3)
解:设点P出发t秒后追上点Q,
依题意有:3t=t+40,
解得t=20.
答:点P出发20秒后追上点Q.
(4)
解:当P在Q的左侧时,
此时3t+20=40+t,
解得:t=10;
当P在Q的右侧时,
此时3t=40+t+20,
解得:t=30.
答:点P出发10或30秒后,与点Q的距离是20cm.
【点睛】
本题主要考查了线段的有关计算,一元一次方程的应用等知识.
2、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
3、 (1)
(2)①,理由见解析;②4秒或22秒
【解析】
【分析】
(1)利用角的和差关系求解 再利用角平分线的含义求解即可;
(2)①设,再利用角的和差关系依次求解, ,, 从而可得答案;②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.再分三种情况讨论:如图,当时 ,,如图,当时 ,,如图,当时,,,再利用互余列方程解方程即可.
(1)
解:
∵平分
∴
(2)
解:①设,则,
∴
∴,
∴
②由题意得:与重合是第18秒,与重合是第8秒,停止是36秒.
如图,当时 ,,
则,
∴
如图,当时 ,,
则,方程无解,不成立
如图,当时,,,
则,
∴
综上所述秒或22秒
【点睛】
本题考查的是角的和差运算,角平分线的定义,角的动态定义的理解,互为余角的含义,清晰的分类讨论是解本题的关键.
4、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
5、 (1)作图见解答,
(2)6
【解析】
【分析】
利用基本作图画出对应的几何图形,(1)根据线段的和差得到;(2)先利用点为的中点得到厘米,则厘米,然后利用进行计算.
(1)
解:如图,
;
故答案为:;
(2)
解:点为的中点,
厘米,
,
厘米,
(厘米);
故答案为:6.
【点睛】
本题考查了作图复杂作图,两点间的距离,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.
鲁教版 (五四制)第五章 基本平面图形综合与测试巩固练习: 这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试巩固练习,共20页。试卷主要包含了已知,则的补角的度数为,若,则的补角的度数为,如图,下列说法不正确的是,下列说法正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品一课一练,共25页。试卷主要包含了下列各角中,为锐角的是,如图所示,由A到B有①,下列说法正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步练习题,共24页。试卷主要包含了下列说法中正确的是,用度,如图,射线OA所表示的方向是,下列说法正确的是等内容,欢迎下载使用。