六年级下册第五章 基本平面图形综合与测试精品随堂练习题
展开六年级数学下册第五章基本平面图形定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
2、用度、分,秒表示22.45°为( )
A.22°45′ B.22°30′ C.22°27′ D.22°20′
3、已知,则∠A的补角等于( )
A. B. C. D.
4、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )
A.垂线段最短 B.两点确定一条直线
C.两点之间线段最短 D.同角的补角相等
5、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
6、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
7、下列说法正确的是( )
A.锐角的补角不一定是钝角 B.一个角的补角一定大于这个角
C.直角和它的的补角相等 D.锐角和钝角互补
8、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
9、如图,延长线段AB到点C,使,D是AC的中点,若,则BD的长为( )
A.2 B.2.5 C.3 D.3.5
10、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:18.25°______18°25′(填“>”“<”或“=”)
2、西北方向:_________;西南方向:__________;东南方向:__________;东北方向:__________
3、已知射线OA与射线OB垂直,射线OA表示的方向是北偏西25°方向,则射线OB表示的方向为南偏西________方向.
4、如图,点C、D在线段AB上,线段,若线段,,则线段CD的长度为______cm.
5、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.
(1)若∠BOC=40°,求∠AOF的大小.
(2)若∠COF=x°,求∠BOC的大小.
2、如图,已知点A,B,C,请按要求画出图形.
(1)画直线AB和射线CB;
(2)连结AC,并在直线AB上用尺规作线段AE,使;(要求保留作图痕迹)
3、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
4、已知直线MN上有一线段AB,AB=6,点C是线段AB的中点,点D在直线MN上,且BD=2,求线段DC的长.
5、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发,在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.
(1)若AP=PB,
①当动点C,D运动了2s时,AC+PD= cm;
②当C,D两点间的距离为5cm时,则运动的时间为 s;
(2)当点C,D在运动时,总有PD=2AC,
①求AP的长度;
②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
2、C
【解析】
【分析】
将化成即可得.
【详解】
解:∵,
∴,
故选:C.
【点睛】
题目主要考查角度间的换算公式,熟练掌握角度间的变换进率是解题关键.
3、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
4、B
【解析】
【分析】
根据两点确定一条直线解答即可.
【详解】
解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,
故选B.
【点睛】
本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.
5、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
6、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
7、C
【解析】
【分析】
根据余角和补角的概念判断即可.
【详解】
解:A、因为锐角的补角与锐角之和为180°,所以锐角的补角一定是钝角,所以本说法不符合题意;
B、当这个角为120°时,120°的补角是60°,所以本说法不符合题意;
C、根据直角的补角是直角.所以本说法符合题意;
D、锐角和钝角的度数不确定,不能确定锐角和钝角是否互补,所以本说法不符合题意;
故选:C.
【点睛】
本题考查的是余角和补角的概,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.
8、A
【解析】
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
9、C
【解析】
【分析】
由,,求出AC,根据D是AC的中点,求出AD,计算即可得到答案.
【详解】
解:∵,,
∴BC=12,
∴AC=AB+BC=18,
∵D是AC的中点,
∴,
∴BD=AD-AB=9-6=3,
故选:C.
【点睛】
此题考查了线段的和差计算,线段中点的定义,数据线段中点定义及掌握逻辑推理能力是解题的关键.
10、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
二、填空题
1、<
【解析】
【分析】
先把化为 从而可得答案.
【详解】
解:
而
故答案为:<
【点睛】
本题考查的是角度的大小比较,角的单位换算,掌握“角的60进位制以及大化小用乘法”是解本题的关键.
2、 射线OE 射线OF 射线OG 射线OH
【解析】
略
3、
【解析】
【分析】
如图(见解析),先根据射线的方位角可得,再根据角的和差即可得.
【详解】
解:如图,由题意得:,,
则,
即射线表示的方向为南偏西方向,
故答案为:.
【点睛】
本题考查了方位角、角的和差、垂直,掌握理解方位角是解题关键.
4、7
【解析】
【分析】
由,得出的长度, ,从而得出CD的长度
【详解】
,
故答案为7
【点睛】
本题主要考查线段的和与差及线段两点间的距离,熟练运用线段的和与差计算方法进行求解是解决本题的关键.
5、 北
东 45 1000
【解析】
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)结合题意,根据平角和角度和差的性质计算得,再根据角平分线的性质计算,即可得到答案;
(2)根据角度和差性质,计算得;根据角平分线的性质计算,即可得到答案.
【详解】
(1)∵∠EOC=90°,∠BOC=40°
∴
∵OF平分∠AOE
∴ ;
(2)∵∠COF=x°,∠EOC=90°
∴
∵OF平分∠AOE
∴
∴.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.
2、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线和射线的定义画图即可;
(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;
(1)
如图所示;
(2)
如图所示,
或
【点睛】
本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.
3、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
4、1或5
【解析】
【分析】
根据题意,分两种情况:(1)点D在点B的右侧时,(2)点D在点B的左侧时,求出线段DC的长度是多少即可.
【详解】
解:
∵点C是AB的中点,
∴.
∵AB=6,
当点D在点B左侧时;
∵DB=2,
∴
当点D在点B右侧时;
.
【点睛】
本题考查了利用中点性质转化线段之间倍分关系,从而求出线段的长短.解题的关键是在不同情况下灵活运用它的不同表示方法,同时灵活运用线段的和差倍分转化线段之间的数量关系也是十分关键的一点.
5、 (1)①12;②4
(2)①;②或
【解析】
【分析】
(1)①先根据线段和差求出,再根据运动速度和时间求出的长,从而可得的长,由此即可得;
②设运动时间为,先求出的取值范围,再求出当点重合时,,从而可得当时,点一定在点的右侧,然后根据建立方程,解方程即可得;
(2)①设运动时间为,则,从而可得,再根据当在运动时,总有可得在点的运动过程中,点始终在线段上,此时满足,然后根据即可得出答案;
②分点在线段上和点在的延长线上两种情况,分别根据线段和差即可得.
(1)
解:①,
,
当动点运动了时,,
,
,
故答案为:12;
②设运动时间为,
点运动到点所需时间为,点运动到点所需时间为,
则,
由题意得:,
则,
当点重合时,,即,
解得,
所以当时,点一定在点的右侧,
则,即,
解得,
即当两点间的距离为时,运动的时间为,
故答案为:4.
(2)
解:①设运动时间为,则,
,
,
当在运动时,总有,即总有,
的值与点的位置无关,
在点的运动过程中,点始终在线段上,此时满足,
,
又,
,
解得,
答:的长度为;
②由题意,分两种情况:
(Ⅰ)当点在线段上时,
,
点在点的右侧,
,,
代入得:,解得;
(Ⅱ)当点在的延长线上时,则,
代入得:;
综上,的长度为或.
【点睛】
本题考查了线段的和差、一元一次方程的几何应用等知识,较难的是题(2)②,正确分两种情况讨论是解题关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共25页。试卷主要包含了下列两个生活,如图,一副三角板,如果A等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课后练习题,共25页。试卷主要包含了已知与满足,下列式子表示的角,用度等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀同步练习题,共24页。试卷主要包含了下列说法中正确的是,用度,如图,射线OA所表示的方向是,下列说法正确的是等内容,欢迎下载使用。