初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀综合训练题
展开这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀综合训练题,共23页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
2、如图,C为线段上一点,点D为的中点,且,.则的长为( ).
A.18 B.18.5 C.20 D.20.5
3、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )
A.4 B.5 C.10 D.14
4、已知,则的补角等于( )
A. B. C. D.
5、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )
A. B. C. D.
6、如图,在方格纸中,点A,B,C,D,E,F,H,K中,在同一直线上的三个点有( ).
A.3组 B.4组 C.5组 D.6组
7、钟表10点30分时,时针与分针所成的角是( )
A. B. C. D.
8、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是( )
A.两点之间线段最短 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段的长度叫做这两点之间的距离
9、一艘海上搜救船借助雷达探测仪寻找到事故船的位置,雷达示意图如图所示,搜救船位于图中点O处,事故船位于距O点40海里的A处,雷达操作员要用方位角把事故船相对于搜救船的位置汇报给船长,以便调整航向,下列四种表述方式中正确的为( )
A.事故船在搜救船的北偏东60°方向 B.事故船在搜救船的北偏东30°方向
C.事故船在搜救船的北偏西60°方向 D.事故船在搜救船的南偏东30°方向
10、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )
A.①② B.①③ C.②④ D.③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个角比它的补角的3倍多40°,则这个角的度数为______.
2、已知点C,D在直线AB上,且,若,则CD的长为______.
3、45°30'=_____°.
4、一块手表上午6点45分,此时时针分针所夹锐角的大小为__________度.
5、在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若|a﹣b|=2022,且AO=2BO,则a+b的值为___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知平分平分.
(1)求的度数.
(2)求的度数.
2、如图(1),∠BOC和∠AOB都是锐角,射线OB在∠AOC内部,,.(本题所涉及的角都是小于180°的角)
(1)如图(2),OM平分∠BOC,ON平分∠AOC,填空:
①当,时,______,______,______;
②______(用含有或的代数式表示).
(2)如图(3),P为∠AOB内任意一点,直线PQ过点O,点Q在∠AOB外部:
①当OM平分∠POB,ON平分∠POA,∠MON的度数为______;
②当OM平分∠QOB,ON平分∠QOA,∠MON的度数为______;
(∠MON的度数用含有或的代数式表示)
(3)如图(4),当,时,射线OP从OC处以5°/分的速度绕点O开始逆时针旋转一周,同时射线OQ从OB处以相同的速度绕点O逆时针也旋转一周,OM平分∠POQ,ON平分∠POA,那么多少分钟时,∠MON的度数是40°?
3、如图,是内的两条射线,平分,,若,,求的度数.
4、已知点A、B、C在同一条直线上,点M、N分别是AC、BC的中点,且AC=a,BC=b.
(1)如图①,若点C在线段AB上,a=4,b=6,求线段MN的长;
(2)若点C为线段AB上任一点,其它条件不变,请直接写出你的猜想结果,MN的长度为 (用含有a,b的代数式表示),不必说明理由;
(3)若点C在线段AB的延长线上,其它条件不变,请在图②中画出图形,试猜想MN的长度为 (用含有a,b的代数式表示,a>b),并说明理由.
5、如图,点为直线上一点,过点作射线,使.将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.
(1)将图1中的三角板绕点逆时针旋转至图2,使一边在的内部,且恰好平分.求的度数.
(2)将图1中的三角板绕点以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为多少?(直接写结果,不写步骤)
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
2、C
【解析】
【分析】
根据线段中点的性质,可用CD表示BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,AC的长.
【详解】
解:由点D为BC的中点,得
BC=2CD=2BD,
由线段的和差,得
AB=AC+BC,即4CD+2CD=30,
解得CD=5,
AC=4CD=4×5=20cm,
故选:C;
【点睛】
本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
3、C
【解析】
【分析】
设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.
【详解】
∵AC:CD:DB=2:3:4,
∴设AC=2x,CD=3x,DB=4x,
∴AB=9x,
∵AB=18,
∴x=2,
∴AD=2x+3x=5x=10,
故选:C.
【点睛】
本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.
4、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
5、B
【解析】
【分析】
由图知,∠AOB=180°−+,从而可求得结果.
【详解】
∠AOB=180°−+=180°-37°=143°
故选:B
【点睛】
本题考查了方位角及角的和差运算,掌握角的和差运算是关键.
6、C
【解析】
【分析】
利用网格作图即可.
【详解】
如图:
在同一直线上的三个点有A、B、C;B、E、K;C、H、E;D、E、F;D、H、K,共5组,
故选:C
【点睛】
此题考查了直线的有关概念,在网格中找到相应的直线是解答此题的关键.
7、B
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:10点30分时的时针和分针相距的份数是4.5,
10点30分时的时针和分针所成的角的度数为30°×4.5=135°,
故选:B.
【点睛】
本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.
8、C
【解析】
【分析】
结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.
【详解】
结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线
故选:C.
【点睛】
本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.
9、B
【解析】
【分析】
根据点的位置确定应该有方向以及距离,进而利用方位角转化为方向角得出即可.
【详解】
A. 事故船在搜救船的北偏东60°方向,是从0°算起30°方向不是事故船方向,故选项A不正确;
B. 事故船在搜救船的北偏东30°方向,是从0°算起60°方向是事故船的方向,故选项B正确;
C. 事故船在搜救船的北偏西60°方向,是从0°算起150°方向,不是事故船出现的方向,故选项C不正确;
D. 事故船在搜救船的南偏东30°方向,是从0°算起300°方向,不是事故船的方向,故选项D不正确.
故选B.
【点睛】
本题考查了方位角的定义,确定方位角的两个要素:一是方向;二是角度,掌握理解定义是解题关键.
10、D
【解析】
【分析】
分别利用直线的性质以及线段的性质分析得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.
二、填空题
1、##145度
【解析】
【分析】
设这个角的补角的度数为 ,则这个角的度数为 ,根据“一个角比它的补角的3倍多40°,”列出方程,即可求解.
【详解】
解:设这个角的补角的度数为 ,则这个角的度数为 ,根据题意得:
,
解得: ,
∴这个角的度数为.
故答案为:
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,利用方程思想解答是解题的关键.
2、3或7或11
【解析】
【分析】
分三种情况讨论,当在线段上,当在的左边,在线段上,当在的左边,在的右边,再利用线段的和差关系可得答案.
【详解】
解:如图,当在线段上,
,,
如图,当在的左边,在线段上,
,,
如图,当在的左边,在的右边,
,,
故答案为:3或7或11
【点睛】
本题考查的是线段的和差运算,清晰的分类讨论是解本题的关键.
3、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
4、67.5
【解析】
【分析】
6点45分时,分针指向9,时针在指向6与7之间,则时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算2×30°+30°-0.5°×45即可.
【详解】
解:∵6点45分时,分针指向9,时针在指向6与7之间,
∴时针45分钟转过的角度即为6时45分时,时钟的时针与分针的夹角度数,即2×30°+30°-0.5°×45=67.5°.
故答案为:67.5.
【点睛】
本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.
5、-674
【解析】
【分析】
根据绝对值和数轴表示数的方法,可求出OA,OB的长,进而确定a、b的值,再代入计算即可.
【详解】
∵|a﹣b|=2022,即数轴上表示数a的点A,与表示数b的点B之间的距离为2022,
∴ AB=2022,
∵且AO=2BO,
∴OB=674,OA=1348,
∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,
∴a=﹣1348,b=674,
∴a+b=﹣1348+674=﹣674,
故答案为:﹣674.
【点睛】
本题考查数轴表示数,代数式求值以及绝对值的定义,掌握数轴表示数的方法,绝对值的定义是解决问题的前提.
三、解答题
1、 (1)60°
(2)10°
【解析】
【分析】
(1)根据角平分线的定义得∠AOC =2∠AOB,即可求解;
(2)先求出∠COE的度数,再求出∠DOE的度数,最后根据∠COD=∠COE-∠DOE计算即可.
(1)
∠AOB =,OB平分∠AOC
∠AOC =2∠AOB=2=
(2)
∠AOE=,∠AOC =
∠COE=∠AOE-∠AOC=-=
又OD平分∠AOE
∠DOE=∠AOE==70°
∠COD=∠COE-∠DOE=-=
【点睛】
本题主要考查角平分线的定义,掌握角平分线把已知角分成两个相等的角是解题的关键.
2、 (1)
(2),
(3)分钟时,∠MON的度数是40°
【解析】
【分析】
(1)根据角平分线的定义判断即可;
(2)①根据求解即可,②根据求解即可;
(3)分在的外部和内部两种情况讨论,在外部时根据旋转的时间乘以速度等于,在内部时可以判断,,则此情况不存在
(1)
① OM平分∠BOC,ON平分∠AOC,
当,时,,
,
②
故答案为:
(2)
①OM平分∠POB,ON平分∠POA,
②OM平分∠QOB,ON平分∠QOA,
故答案为:,
(3)
根据题意
OM平分∠POQ,
如图,当在的外部时,
MON的度数是40°
ON平分∠POA,
则旋转了
分
即分钟时,∠MON的度数是40°
如图,在的内部时,
即
此情况不存在
综上所述,分钟时,∠MON的度数是40°
【点睛】
本题考查了几何图形中角度的计算,角平分线的意义,掌握角平分线的意义是解题的关键.
3、80°
【解析】
【分析】
设∠BOE为x°,则∠DOB=55°-x°,∠EOC=2x°,然后根据角平分线定义列方程解决求出∠BOE,可得∠EOC.
【详解】
解:设∠BOE=x°,则∠DOB=55°﹣x°,
由∠BOE=∠EOC可得∠EOC=2x°,
由OD平分∠AOB,
得∠AOB=2∠DOB,
故有2x+x+2(55﹣x)=150,
解方程得x=40,
故∠EOC=2x=80°.
【点睛】
本题主要考查了角平分线的定义以及角的计算,根据角平分线的性质和已知条件列方程求解.方程思想是解决问题的基本思考方法.
4、 (1)线段MN的长为5;
(2);
(3),图见解析,理由见解析.
【解析】
【分析】
(1)根据线段中点可得,,结合图形求解即可得;
(2)根据线段中点的性质可得,,结合图形求解即可得;
(3)根据题意,作出图形,然后根据线段中点的性质求解即可得.
(1)
解:∵ 点M、N分别是AC、BC的中点,
∴ ,,
∴ ;
(2)
解:∵ 点M、N分别是AC、BC的中点,,,
∴ ,,
∴ ,
故答案为:;
(3)
猜想:;理由如下:
如图所示:
∵ 点M、N分别是AC、BC的中点
∴
∴ ,
故答案为:.
【点睛】
题目主要考查线段中点及求线段长度,理解题意,结合图形进行分析是解题关键.
5、 (1)
(2)直线恰好平分锐角,则的值为s或s.
【解析】
【分析】
(1)先利用角平分线的定义求解再利用 从而可得答案;
(2)分两种情况讨论:如图,当直线恰好平分锐角,记为上的点,求解线段旋转的角度如图,当平分时,求解旋转的角度为: 从而可得答案.
(1)
解:平分
(2)
解:如图,当直线恰好平分锐角,记为上的点,
,
如图,当平分时,
此时转的角度为:
综上:直线恰好平分锐角,则的值为s或s.
【点睛】
本题考查的是角平分线的定义,角的和差运算,角的动态定义的理解,清晰的分类讨论是解本题的关键.
相关试卷
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共21页。试卷主要包含了能解释,在下列生活,如图,点在直线上,平分,,,则,已知点C等内容,欢迎下载使用。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试综合训练题,共19页。试卷主要包含了下列说法错误的是,用度,已知与满足,下列式子表示的角等内容,欢迎下载使用。
这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时作业,共24页。试卷主要包含了如图,OM平分,,,则,如图,一副三角板,下列现象等内容,欢迎下载使用。

