初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试优秀测试题
展开六年级数学下册第五章基本平面图形章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知线段AB、CD,AB大于CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间) B.点B与点D重合
C.点B在线段CD的延长线上 D.点B在线段DC的延长线上
2、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )
A. B. C. D.
3、下列说法错误的是( )
A.两点之间,线段最短
B.经过两点有一条直线,并且只有一条直线
C.延长线段AB和延长线段BA的含义是相同的
D.射线AB和射线BA不是同一条射线
4、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
5、下列说法中正确的是( )
A.两点之间所有的连线中,直线最短 B.射线AB和射线BA是同一条射线
C.一个角的余角一定比这个角大 D.一个锐角的补角比这个角的余角大90°
6、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
7、已知,则的补角等于( )
A. B. C. D.
8、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
9、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
10、如果线段,,那么下面说法中正确的是( )
A.点在线段上 B.点在直线上
C.点在直线外 D.点可能在直线上,也可能在直线外
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.
2、已知∠α与∠β互余,且∠α=35°30′,则∠β=______度.
3、冬至是地球赤道以北地区白昼最短、黑夜最长的一天,在苏州有“冬至大如年”的说法.苏州冬至日正午太阳高度角是,的余角为__________.
4、如图,已知点O在直线AB上,OC⊥OD,∠BOD:∠AOC=3:2,那么∠BOD=___度.
5、如图,,则射线表示是南偏东__________的方向.
三、解答题(5小题,每小题10分,共计50分)
1、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数.
2、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
3、已知直线MN上有一线段AB,AB=6,点C是线段AB的中点,点D在直线MN上,且BD=2,求线段DC的长.
4、(1)如图l,点D是线段AC的中点,且 AB=BC,BC=6,求线段BD的长;
(2)如图2,已知OB平分∠AOD,∠BOC=∠AOC,若∠AOD=100°,求∠BOC的度数.
5、已知∠AOB,射线OC在∠AOB的内部,射线OM是∠AOC靠近OA的三等分线,射线ON是∠BOC靠近OB的三等分线.
(1)如图,若∠AOB=120°,OC平分∠AOB,
①补全图形;
②填空:∠MON的度数为 .
(2)探求∠MON和∠AOB的等量关系.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.
【详解】
解:AB大于CD,将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
∴点B在线段CD的延长线上,
故选:C.
【点睛】
本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.
2、C
【解析】
【分析】
把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的.
【详解】
解:把大正方形进行切割,如下图,
由图可知,正方形可分割成16个面积相等的等腰直角三角形,
号正方形,由两个等腰直角三角形组成,
占整个正方形面积的.
故选 C.
【点睛】
本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.
3、C
【解析】
【分析】
根据两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义依次分析判断.
【详解】
解:A. 两点之间,线段最短,故该项不符合题意;
B. 经过两点有一条直线,并且只有一条直线,故该项不符合题意;
C. 延长线段AB和延长线段BA的含义是不同的,故该项符合题意;
D. 射线AB和射线BA不是同一条射线,故该项不符合题意;
故选:C.
【点睛】
此题考查了两点之间线段最短的性质、两点确定一条直线、延长线的定义以及射线的定义,综合掌握各知识点是解题的关键.
4、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
5、D
【解析】
【分析】
分别根据线段的性质、射线、余角、补角等定义一一判断即可.
【详解】
解:A.两点之间所有的连线中,线段最短,故此选项错误;
B.射线AB和射线BA不是同一条射线,故此选项错误;
C.设这个锐角为α,取α=60°,则90°−α=30°<α,故一个角的余角不一定比这个角大,,此选项错误;
D.设这个锐角为β,则180°−β−(90°−β)=90°,所以一个锐角的补角比这个角的余角大90°,故此选项正确;
故选:D
【点睛】
本题考查了线段的性质、射线、余角、补角等定义,是基础题,熟记相关概念与性质是解题的关键.
6、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
7、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
8、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
9、B
【解析】
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
10、D
【解析】
【分析】
根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.
【详解】
解:∵,MA+MB=13cm,
∴点可能在直线上,也可能在直线外,
故选:D.
【点睛】
此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.
二、填空题
1、两点确定一条直线
【解析】
【分析】
根据两点确定一条直线,即可求解.
【详解】
解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.
故答案为:两点确定一条直线
【点睛】
本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.
2、
【解析】
【分析】
根据90°-∠α即可求得的值.
【详解】
解:∵∠α与∠β互余,且∠α=35°30′,
∴∠β
故答案为:
【点睛】
本题考查了求一个角的余角,角度进制的转化,正确的计算是解题的关键.
3、
【解析】
【分析】
两个角的和为直角,则称这两个角互为余角,简称互余,根据余角的概念即可求得结果.
【详解】
故答案为:
【点睛】
本题主要考查了余角的计算,掌握余角的概念是关键.
4、54
【解析】
【分析】
根据平角等于180°得到等式为:∠AOC+∠COD+∠DOB=180°,再由∠COD=90°,∠BOD:∠AOC=3:2即可求解.
【详解】
解:∵OC⊥OD,
∴∠COD=90°,
设∠BOD=3x,则∠AOC=2x,
由题意知:2x+90°+3x=180°,
解得:x=18°,
∴∠BOD=3x=54°,
故答案为:54°.
【点睛】
本题考查了平角的定义,属于基础题,计算过程中细心即可.
5、
【解析】
【分析】
如图,利用互余的含义,先求解的大小,再根据方向角的含义可得答案.
【详解】
解:如图,
射线表示是南偏东的方向.
故答案为:
【点睛】
本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.
三、解答题
1、
【解析】
【分析】
根据角平分线的定义求出,再用平角减去即可得到结果.
【详解】
解:∵∠AOB是平角,
∴
∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,
∴,,
∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.
【点睛】
本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.
2、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
3、1或5
【解析】
【分析】
根据题意,分两种情况:(1)点D在点B的右侧时,(2)点D在点B的左侧时,求出线段DC的长度是多少即可.
【详解】
解:
∵点C是AB的中点,
∴.
∵AB=6,
当点D在点B左侧时;
∵DB=2,
∴
当点D在点B右侧时;
.
【点睛】
本题考查了利用中点性质转化线段之间倍分关系,从而求出线段的长短.解题的关键是在不同情况下灵活运用它的不同表示方法,同时灵活运用线段的和差倍分转化线段之间的数量关系也是十分关键的一点.
4、(1)BD=1;(2)∠COB=20°
【解析】
【分析】
(1)根据AB=BC,BC=6求出AB的值,再根据线段的中点求出AD的值,然后可求BD的长;
(2)先根据角平分线的定义求出∠AOB,再根据∠BOC=∠AOC,求解即可.
【详解】
解:(1)∵AB=BC,BC=6,
∴AB=×6=4,
∴AC=AB+BC=10,
∵点D是线段AC的中点,
∴AD=AC=5,
∴BD=AD-AB=5-4=1;
(2)∵OB平分∠AOD,∠AOD=100°,
∴∠AOB=∠AOD=50°,
∵∠BOC+∠AOC=∠AOB,∠BOC=∠AOC,
∴∠AOC+∠AOC=50°,
∴∠AOC=30°,
∴∠BOC=∠AOC=20°.
【点睛】
本题考查了线段的中点,线段的和差,角的平分线,角的和差,数形结合是解答本题的关键.
5、 (1)①见解析;②
(2),见解析
【解析】
【分析】
(1)①根据∠AOB=120°,OC平分∠AOB,先求出∠BOC=∠AOC=, 在根据OM是∠AOC靠近OA的三等分线,求出∠AOM=,根据ON是∠BOC靠近OB的三等分线,∠BON=,然后在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON即可;
②根据∠AOM=,∠BON=,∠AOB=120°,可求∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°即可;
(2)根据OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.可求∠AOM=,∠BON=,可得 .
(1)
①∵∠AOB=120°,OC平分∠AOB,
∴∠BOC=∠AOC=,
∵OM是∠AOC靠近OA的三等分线,
∴∠AOM=,
∵ON是∠BOC靠近OB的三等分线,
∴∠BON=,
在∠AOB内部,先画∠AOC=60°,在∠AOC内部,画∠AOM=20°,在∠BOC内部,画∠BON,
补全图形;
②∵∠AOM=,∠BON=,∠AOB=120°,
∴∠MON=∠AOB-∠AOM-∠BON=120°-20°-20°=80°,
∴∠MON的度数是80°,
故答案为:80°
(2)
∠MON=∠AOB.
∵OM是∠AOC靠近OA的三等分线, ON是∠BOC靠近OB的三等分线.
∴∠AOM=,∠BON=,
∴ ,
,
,
.
【点睛】
本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时作业,共22页。试卷主要包含了下列说法中正确的是,如图,点在直线上,平分,,,则,下列说法等内容,欢迎下载使用。
鲁教版 (五四制)第五章 基本平面图形综合与测试课后复习题: 这是一份鲁教版 (五四制)第五章 基本平面图形综合与测试课后复习题,共24页。试卷主要包含了已知线段AB等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试测试题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试测试题,共22页。试卷主要包含了在一幅七巧板中,有我们学过的,如图所示,由A到B有①,已知,则的补角的度数为等内容,欢迎下载使用。