


2022年河北省石家庄市中考数学三年高频真题汇总 卷(Ⅲ)(含答案解析)
展开2022年河北省石家庄市中考数学三年高频真题汇总 卷(Ⅲ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在中,,,则( )
A. B. C. D.
2、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25° B.27° C.30° D.45°
3、下列计算正确的是( )
A. B. C. D.
4、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
5、若,则的值是( )
A. B.0 C.1 D.2022
6、如图所示,该几何体的俯视图是
A. B.
C. D.
7、下列计算中正确的是( )
A. B. C. D.
8、已知,,在二次函数的图象上,,,则的大小关系是( )
A. B. C. D.
9、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60 B.30 C.600 D.300
10、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )
A.10 B.12 C.15 D.18
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_______.
2、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
3、在一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是______.
4、如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在,则重叠部分的图形的周长为___.
5、如图,在中,是边的垂直平分线,,的周长为23,则的周长为_________.
三、解答题(5小题,每小题10分,共计50分)
1、已知,,点在边上,点是边上一动点,.以线段为边在上方作等边,连接、,再以线段为边作等边(点、在的同侧),作于点.
(1)如图1,.①依题意补全图形;②求的度数;
(2)如图2,当点在射线上运动时,用等式表示线段与之间的数量关系,并证明.
2、如图1,在△ABC中,AB = AC =10,tanB =,点D为BC 边上的动点(点D不与点B ,C重合).以D为顶点作∠ADE =∠B ,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)当D运动到BC的中点时,直接写出AF的长;
(2)求证:10CE=BD∙CD;
(3)点D在运动过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
3、在正方形网格中,每个小正方形的边长为1,△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC沿x轴翻折后的△A1B1C1;
(2)以点M为位似中心,在网格中作出△A1B1C1的位似图形△A2B2C2,使其位似比为2:1;
(3)点A2的坐标______;△ABC与△A2B2C2的周长比是______.
4、一次数学测试,小明做试卷用小时,检查试卷用去小时,这时离测试结束还有小时,这次测试规定时间是多少小时?
5、计算:
(1);
(2)
-参考答案-
一、单选题
1、B
【分析】
作出图形,设BC=3k,AB=5k,利用勾股定理列式求出AC,再根据锐角的余切即可得解.
【详解】
解:如图,
,
∴
∴设BC=3k,AB=5k,
由勾股定理得,
∴.
故选:B.
【点睛】
本题考查了求三角函数值,利用“设k法”表示出三角形的三边求解更加简便.
2、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
3、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
4、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
5、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
6、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
7、B
【分析】
根据绝对值,合并同类项和乘方法则分别计算即可.
【详解】
解:A、,故选项错误;
B、,故选项正确;
C、不能合并计算,故选项错误;
D、,故选项错误;
故选B.
【点睛】
本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.
8、B
【分析】
由抛物线开口向下且对称轴为直线x=-3知离对称轴水平距离越远,函数值越大,据此求解可得.
【详解】
解:∵二次函数中a=-1<0,
∴抛物线开口向下,有最大值.
∵x=-=-3,
∴离对称轴水平距离越远,函数值越小,
∵-3-(-3)<-1-(-3)<4-(-3),
∴.
故选:B.
【点睛】
本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.
9、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
10、C
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.
【详解】
解:由题意可得,
,
解得,a=15.
经检验,a=15是原方程的解
故选:C.
【点睛】
本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.
二、填空题
1、6cm,5cm
【分析】
设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解.
【详解】
解:设长是x厘米,则宽是(11-x)cm,
根据题意得:x(11-x)=30,
整理得
解得:x1=5,x2=6,
则当x=5时,11-x=6(cm);
当x=6时,11-x=5(cm),
则长是6cm,宽是5cm,
故答案为6cm,5cm.
【点睛】
本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键.
2、4或
【分析】
点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.
【详解】
解:∵B在x轴上,
∴设 ,
∵ ,
∴ ,
①当时,B点横坐标与A点横坐标相同,
∴ ,
∴ ,
∴ ,
②当时, ,
∵点A坐标为,,
∴ ,
∴ ,
解得: ,
∴ ,
∴ ,
故答案为:4或.
【点睛】
本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.
3、20
【分析】
根据摸到黄球的频率稳定在0.2列式求解即可.
【详解】
解:由题意得
,
解得x=20,
经检验x=20符合题意,
故答案为:20.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
4、##
【分析】
先说明△AFD′≌△CFB可得BF=D′F,设D′F=x,在Rt△AFD′中根据勾股定理求得x,再根据AF=AB−BF求得AF,勾股定理求得,最后根据周长公式求解即可.
【详解】
解:由于折叠可得:AD′=BC,∠D′=∠B,
又∵∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=x,则AF=8−x,
在Rt△AFD′中,(8−x)2=x2+42,解得:x=3,
∴AF=AB−FB=8−3=5,
在中,
∴重叠部分的图形的周长为
故答案为:
【点睛】
本题考查了勾股定理的正确运用,在直角三角形AFD′中运用勾股定理求出BF的长是解答本题的关键.
5、33
【分析】
根据线段垂直平分线的性质,可得AD=CD,AC=2AE= ,再由的周长为23,可得AB+BC= ,即可求解.
【详解】
解:∵是边的垂直平分线,
∴AD=CD,AC=2AE= ,
∴AD+BD=CD+BD=BC,
∵的周长为23,
∴AB+AD+BD=AB+BC= ,
∴的周长为 .
故答案为:33
【点睛】
本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.
三、解答题
1、
(1)①见解析;②∠BPH=90°
(2),证明见解析
【分析】
(1)①按照题意作图即可.
②由等边三角形性质及平角为180°即可求得.
(2)由(1)知是等边三角形可证得是等边三角形,即可由边角边证得,再由直角三角形的性质以及平角的性质可推得.
(1)
①如图所示,即为所求;以B、O为圆心,OB长为半径,画弧交于点C,连接OC,BC,即为等边三角形.
②是等边三角形,
,
,
,
;
(2)
,证明如下:
如图,连接,,
由(1)可知,是等边三角形,
,,
是等边三角形,
,,
,
,
,,
,
,
,
,
,
,
,
在中,,
.
【点睛】
本题考查了三角形内的综合问题,包括尺规作图,全等三角形的证明及性质,等边三角形的性质等,两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“”),等边三角形三边相等,且每个角都等于60°,在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半熟悉其判定及性质是解题的关键.
2、
(1)
(2)见解析
(3)存在,
【分析】
(1)根据题意作出图形,进而,根据tanB =,,求得,;
(2)证明,直接得证;
(3)作于M,于H,于N.则,进而可得四边形AMHN为矩形,证明,求得,当时,由于点D不与点C重合,可知为等腰三角形,进而求得.
(1)
如图,当D运动到BC的中点时,
,
,
,
又
tanB =,
设,则
(2)
证明:∵
∴
∵,;∴
∴
∴
∵
∴
(3)
点D在运动过程中,存在某个位置,使得.
理由:作于M,于H,于N.
则
∴四边形AMHN为矩形,
∴,,
∵,
∴可设,,
∴可得
∵,∴,
∴.
∵,,
∴,
∵,
∴
∴,
∴
∴,
∴,
当时,由于点D不与点C重合,可知为等腰三角形,
∵,
∴,
∴
∴点D在运动过程中,存在某个位置,使得.此时.
【点睛】
本题考查了等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,正切的定义,掌握相似三角形的性质与判定是解题的关键.
3、
(1)见解析
(2)见解析
(3),
【分析】
(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可;
(2)延长M A1到A2使MA2=2MA1,延长MB1到B2使MB2=2MB1,延长MC1到C2使MC2=2MC1,则可得到△A2B2C2,
(3)根据(2)可写出点A2的坐标;然后根据位似的性质可得△ABC与△A2B2C2的周长比
(1)
如图,△A1B1C1即为所作;
(2)
如图,△A2B2C2即为所作;
(3)
由(2)得,点的坐标,
由作图得,
∵与周长比为1:2
∴△ABC与△A2B2C2的周长比是1:2
故答案为:,1:2
【点睛】
本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.也考查了轴对称变换.
4、这次测试规定时间是小时.
【分析】
根据题意列出算式,计算即可求出值.
【详解】
解:由题意得:
=
=(小时)
【点睛】
此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.
5、
(1)-8
(2)5
【分析】
(1)先计算乘法,再计算加减法;
(2)先计算乘方及乘法,再计算除法,最后计算加减法.
(1)
解:原式
.
(2)
解:原式
=-1+6
.
【点睛】
此题考查了有理数的混合运算及含乘方的有理数的混合运算,正确掌握运算顺序及运算法则是解题的关键.
【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】中考数学三年高频真题汇总 卷(Ⅱ)(含答案及解析),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。
【历年真题】中考数学三年高频真题汇总卷(含答案详解): 这是一份【历年真题】中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了抛物线的顶点坐标是,如图,在中,,,则的值为,下列图形是中心对称图形的是.等内容,欢迎下载使用。
真题汇总:2022年河北省石家庄市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份真题汇总:2022年河北省石家庄市中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共19页。试卷主要包含了已知,,且,则的值为,下列说法正确的是等内容,欢迎下载使用。