终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)

    立即下载
    加入资料篮
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第1页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第2页
    2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系同步测试试题(含答案及详细解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测

    展开

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共28页。试卷主要包含了在平面直角坐标系中,点A,点P关于y轴对称点的坐标是.,在平面直角坐标系中,点在,根据下列表述,能确定位置的是等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,点关于轴的对称点的坐标是(    A. B. C. D.2、若点在第三象限,则点在(    ).A.第一象限 B.第二象限 C.第三象限 D.第四象限3、已知点Ax,5)在第二象限,则点B(﹣x,﹣5)在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限4、在平面直角坐标系中,点Am,2)与点B(3,n)关于y轴对称,则(    A.m=3,n=2 B.m=n=2 C.m=2,n=3 D.m=n=5、点P(﹣1,2)关于y轴对称点的坐标是(  ).A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)6、在平面直角坐标系中,点在(    A.轴正半轴上 B.轴负半轴上C.轴正半轴上 D.轴负半轴上7、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.8、根据下列表述,能确定位置的是(    A.光明剧院8排 B.毕节市麻园路C.北偏东40° D.东经116.16°,北纬36.39°9、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是(     A.离北京市100千米 B.在河北省C.在怀来县北方 D.东经114.8°,北纬40.8°10、点A的坐标为,则点A在(    A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.2、已知点P)在x轴上,则_____.3、在平面直角坐标系内,点Aa,﹣3)与点B(1,b)关于原点对称,则a+b的值_________.4、点A(3,4)到x轴的距离是 _____.5、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.三、解答题(10小题,每小题5分,共计50分)1、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.2、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1(2)如果点Dab)在线段AB上,请直接写出经过(1)的变化后D的对应点D1的坐标;(3)请计算出的面积.3、(探索发现)等腰RtABC中,∠BAC=90°,ABAC,点AB分别是y轴、x轴上两个动点, 直角边 ACx轴于点D,斜边BCy轴于点E(1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标              (2)如图2,当等腰RtABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(拓展应用)(3)如图3,若点Ax轴上,且A(﹣4,0),点By轴的正半轴上运动时,分别以OBAB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CDy轴于点P,当点By轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为            4、如图所示,在平面直角坐标系中,的顶点坐标分别是(1)已知点关于轴的对称点的坐标为,求的值;(2)画出,且的面积为            (3)画出与关于轴成对称的图形,并写出各个顶点的坐标.5、如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1(2)写出点A1     B1     C1     的坐标.6、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点ABC的对应点分别是点A1B1C1);(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1B1C1的对称点分别是点A2B2C2).7、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;(2)求的面积.8、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1C1的坐标:B1              );C1              ).9、如图,在平面直角坐标系中,直角的三个顶点分别是(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结后,求四边形的面积.10、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点Pmn)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________. -参考答案-一、单选题1、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.2、A【分析】根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.【详解】∵点Pmn)在第三象限,m<0,n<0,∴-m>0,-n>0,∴点在第一象限.故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、D【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案.【详解】∵点Ax,5)在第二象限,x<0,∴﹣x>0,∴点B(﹣x,﹣5)在四象限.故选:D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、B【分析】由题意直接根据关于y轴对称点的性质求出mn的值,从而得解.【详解】解:∵点Am,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.m=-3,n=2.故答案为:B.【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.5、A【分析】平面直角坐标系中任意一点Pxy),关于y轴的对称点的坐标是(-xy),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【详解】解:∵点P(-1,2)关于y轴对称,∴点P(-1,2)关于y轴对称的点的坐标是(1,2).故选:A【点睛】本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.6、B【分析】依据坐标轴上的点的坐标特征即可求解.【详解】解:∵点),纵坐标为∴点)在x轴负半轴上故选:B【点睛】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为y轴上点的横坐标为7、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:.光明剧院8排,没有明确具体位置,故此选项不合题意;.毕节市麻园路,不能确定位置,故此选项不合题意;.北偏东,没有明确具体位置,故此选项不合题意;.东经,北纬,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.9、D【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.10、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、 (5,1)【分析】利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.【详解】解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,所以平移后的点坐标为(5,1).故答案为:(5,1).【点睛】本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.2、【分析】根据x轴上点的纵坐标为0求解即可.【详解】解:∵点Px轴上,a-3=0,即a=3,故答案为:3.【点睛】本题主要考查了点的坐标,解题的关键是掌握平面直角坐标系内各象限、坐标轴上点的坐标符号特点.3、2【分析】根据点关于原点对称的坐标特点即可完成.【详解】∵点Aa,﹣3)与点B(1,b)关于原点对称 故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.4、4【分析】根据点到x轴的距离等于纵坐标的绝对值解答即可.【详解】解:点A(3,4)到x轴的距离为4,故答案为:4.【点睛】本题考查了点到坐标轴的距离,掌握点到x轴的距离等于纵坐标的绝对值是解题的关键.5、【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..三、解答题1、图见解析,面积为2【分析】先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵的顶点坐标分别为绕点顺时针旋转,得到∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),顺次连结A1B1 B1C1C1A1则△A1B1C1为所求;===2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.2、(1)见解析;(2)(-ab);(3)2【分析】(1)分别作出点ABC关于y轴的对称点,再顺次连接即可得;(2)根据(1)中规律即可得出答案;(3)用割补法可求△ABC的面积.【详解】解:(1)△A1B1C1如图所示:(2)∵D点的坐标为(ab),D1点的坐标为(-ab);(3)【点睛】本题考查作图-轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会有分割法求三角形面积.关于y轴对称点的性质:纵坐标相同,横坐标互为相反数.3、(1)A(0,1);(2)见解析;(3)不变,2【分析】(1)如图(1),过点CCFy轴于点F,构建全等三角形:△ACF≌△BAOAAS),结合该全等三角形的对应边相等易得OA的长度,由点Ay轴上一点可以推知点A的坐标;(2)过点CCGACy轴于点G,则△ACG≌△BADASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCESAS)得∠CDE=∠G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点CCHy轴于点H,构建全等三角形:△CBH≌△BAOAAS),结合全等三角形的对应边相等推知:CH=BOBH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.【详解】解:(1)如图(1),过点CCFy轴于点FCFy轴于点F∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO在△ACF和△ABO中,∴△ACF≌△BAOAAS),CF=OA=1,A(0,1);(2)如图2,过点CCGACy轴于点GCGAC∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO在△ACG和△ABD中,∴△ACG≌△BADAAS),CG=AD=CD,∠ADB=∠AGC∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,∴△DCE≌△GCESAS),∴∠CDE=∠AGC∴∠ADB=∠CDE(3)BP的长度不变,理由如下:如图,过点CCHy轴于点H ∵∠ABC=90°,∴∠CBH+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBH=∠BAO∵∠CHB=∠AOB=90°,AB=AC∴△CBH≌△BAOAAS),CH=BOBH=AO=4.BD=BOCH=BD∵∠CHP=∠DBP=90°,∠CPE=∠DPB∴△CPH≌△DPBAAS),BP=HP=2.故答案为:2.【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.4、(1);(2)作图见详解;13;(3)作图见详解;【分析】(1)利用关于x轴的对称点的坐标特点(横坐标不变,纵坐标互为相反数)直接写出答案即可;(2)先确定ABC点的位置,然后顺次连接,最后运用割补法计算三角形面积即可;(3)先确定ABC三点关于y轴对称的对称点位置,然后顺次连接即可;最后直接写出三个点的坐标即可.【详解】解:(1)∵点关于x轴的对称点P的坐标为(2)如图:即为所求,故答案为:13;(3)如图:ABC点关于y轴的对称点为:,顺次连接,即为所求【点睛】此题主要考查了轴对称变换的作图题,确定组成图形关键点的对称点是解答本题的关键.5、(1)见解析;(2)(1,5),(3,0),(4,3)【分析】(1)根据对称性即可在图中作出△ABC关于y轴对称的图形△A1B1C1(2)结合(1)即可写出点A1B1C1的坐标.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(1,5),B1(3,0),C1(4,3);故答案为:(1,5),(3,0),(4,3).【点睛】本题考查了作图-轴对称变换,解决本题的关键是掌握轴对称性质.关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相同.6、(1)图见解析;(2)图见解析.【分析】(1)先根据平移分别画出点,再顺次连接即可得;(2)先根据轴对称的性质画出点,再顺次连接即可得.【详解】解:(1)如图,即为所求;(2)如图,即为所求.【点睛】本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.7、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)【分析】(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.【详解】解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);∴如图所示,即为所求;(2)由图可知【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.8、画图见解析;B1(1,2);C1(4,1).【分析】图形绕点A逆时针旋转90°,将ABAC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1C1的坐标,从而得到△AB1C1【详解】如图所示,△AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1).故答案为(1,2),(4,1).【点睛】本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点.9、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出的对应点,从而得到利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.10、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)Pm-3,-n【分析】(1)直接利用关于轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点的坐标.【详解】解:(1)如图所示:△就是所要求作的图形;(2)如图所示:△就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:故答案为:【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了若点P,已知点在一等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题,共31页。试卷主要包含了点在第四象限,则点在第几象限等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试达标测试,共30页。试卷主要包含了若平面直角坐标系中的两点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map