


数学七年级下册第六章 二元一次方程组综合与测试精练
展开这是一份数学七年级下册第六章 二元一次方程组综合与测试精练,共21页。试卷主要包含了二元一次方程的解可以是,若是方程组的解,则的值为等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )
A.1 B.﹣1 C.2 D.﹣3
2、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种 B.3种 C.4种 D.5种
3、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3 B.-2 C.2 D.无法计算
4、二元一次方程的解可以是( )
A. B. C. D.
5、方程,,,,中是二元一次方程的有( )个
A.1 B.2 C.3 D.4
6、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
7、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
8、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
9、若是方程组的解,则的值为( )
A.16 B.-1 C.-16 D.1
10、关于的二元一次方程组的解满足,则k的值是( )
A.2 B. C. D.3
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、凤鸣文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,某文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.凤鸣文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成任务,再过几天(不少于一天)后的早晨6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则该文具超市至少一共订购了 _____套文具套装.
2、填空:端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,在这个问题中的等量关系是:(1)荷包个数+五彩绳个数=______;(2)______=72
3、三元一次方程:含有___未知数,并且含有未知数的项的___都是____,这样的方程叫做三元一次方程.
4、若x2a﹣3+yb+2=3是二元一次方程,则a﹣b=__.
5、将变形成用含的式子表示,那么_______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:
(1)
(2)
2、解下列方程组
(1)(代入消元法)
(2)(加减消元法)
3、解下列方程组:
(1)
(2)
4、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.
问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?
小明所列方程: 小亮所列方程:
根据以上信息,解答下列问题.
(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);
(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);
(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.
5、解下列方程或方程组:
(1)4x-2 =2x+3
(2)
(3)
-参考答案-
一、单选题
1、C
【解析】
【分析】
先求出方程组的解,由方程组的解为正整数分析得出a值.
【详解】
解:解方程组,得,
∵方程组的解为正整数,
∴a=0时,;a=2时,,
∴满足条件的所有整数a的和为0+2=2.
故选:C.
【点睛】
此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.
2、A
【解析】
【分析】
设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.
【详解】
解:设购买了A种奖品x个,B种奖品y个,
根据题意得:,
化简整理得:,得,
∵x,y为非负整数,
∴,,,
∴购买方案为:
方案1:购买了A种奖品0个,B种奖品8个;
方案2:购买了A种奖品5个,B种奖品5个;
方案3:购买了A种奖品10个,B种奖品2个;
∵两种奖品都要买,
∴方案1不符合题意,舍去,
综上可得:有两种购买方案.
故选:A.
【点睛】
本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.
3、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
4、A
【解析】
【分析】
把各个选项答案带进去验证是否成立即可得出答案.
【详解】
解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;
B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;
故选A.
【点睛】
本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.
5、A
【解析】
【详解】
解:方程是二元一次方程,
中的的未知数的次数,不是二元一次方程,
含有三个未知数,不是二元一次方程,
是代数式,不是二元一次方程,
中的的未知数的次数是2,不是二元一次方程,
综上, 二元一次方程的个数是1个,
故选:A.
【点睛】
本题考查了二元一次方程,熟记二元一次方程的定义(含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.
6、C
【解析】
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
7、A
【解析】
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
8、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
9、C
【解析】
【分析】
把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.
【详解】
解:把代入方程组得,
两式相加得;
两式相差得:,
∴,
故选C.
【点睛】
本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
10、B
【解析】
【分析】
解方程组,用含的式子表示,然后将方程组的解代入即可.
【详解】
解:,
①-②得:,
∵,
∴,
解得:,
故选:B.
【点睛】
本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.
二、填空题
1、1350
【解析】
【分析】
设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15,根据该文具套装一套包含有1个笔袋,2只笔,3个笔记本,列方程组求方程组的整数解即可.
【详解】
解:设A组工作x天,B组工作(x+m+)天,C组工作(x+m++n+)(x,m,n都是正整数且m≥1,n≥1),x+m++n+<15
根据题意
由①得③
由②得④
④-5×③得
∵m,n均为正整数,
∴m为奇数,
当m=1,n=2,x=5,x+m++n+=8<15;
当m=3,n=5,x=7,x+m++n+=15>15不合题意;
A组一共工作5天,270×5=1350个
该文具超市至少一共订购了1350套文具套装.
故答案为1350.
【点睛】
本题考查列三元一次方程组解应用题,方程的整数解,利用一套中的比例列方程组,得出是解题关键.
2、 20 荷包钱数+五彩绳钱数
【解析】
【分析】
(1)根据题意即得出荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即得出答案;
(2)根据王老师用了72元钱买荷包和五彩绳,即可直接填空.
【详解】
(1)根据题意可知荷包个数+五彩绳个数就是王老师买荷包和五彩绳的总个数,即为20个.
故答案为:20.
(2)根据题意王老师用了72元钱买荷包和五彩绳,
所以荷包钱数+五彩绳钱数=72.
故答案为:荷包钱数+五彩绳钱数.
【点睛】
本题考查一元一次方程的实际应用.找准等量关系是解答本题的关键.
3、 三个 次数 1
【解析】
【分析】
由题意直接利用三元一次方程的定义进行填空即可.
【详解】
解:含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
故答案为:三个,次数,1.
【点睛】
本题考查三元一次方程的定义,注意掌握含有三个未知数,并且含有未知数的项的次数都是1,这样的方程叫做三元一次方程.
4、3
【解析】
【分析】
先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.
【详解】
解:∵x2a﹣3+yb+2=3是二元一次方程,
∴2a﹣3=1,b+2=1,
∴a=2,b=﹣1,
则a﹣b=2﹣(﹣1)=2+1=3.
故答案为:3.
【点睛】
本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.
5、
【解析】
【分析】
先移项,再将系数化为1,即可求解.
【详解】
解:,
移项,得:,
.
故答案为:
【点睛】
本题主要考查了等式的基本性质,熟练掌握等式两边同时加上(或减去)同一个数(或整式),等式仍然成立;等式两边同时乘或除以同一个不为0的数(或整式),等式仍然成立是解题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)利用加减法求解;
(2)先将方程整理,再利用加减法求出方程组的解.
【详解】
解:(1),
①×5+②,14x=-14,
解得x=-1,
把x=-1代入①,-2+y=-5,
解得y=-3,
∴原方程组的解是;
(2)方程组整理得
由①+②得:6x=18,
∴x=3,
把x=3代入①得:,
所以方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.
2、 (1)
(2)
【解析】
【分析】
(1)将①变形为,然后将其代入②求解得出,然后将其代入③得求解即可得;
(2)①+②得,得出,将其代入①求解,由此即可得出方程组的解.
(1)
解:由①得:③,
把③代入②得, ,
解得,
把代入③得:,
原方程组的解为:;
(2)
解:①+②得:,
解得,
把代入①得,
解得,
∴.
【点睛】
题目主要考查解方程组的方法:代入消元法和加减消元法,熟练掌握两个方法是解题关键.
3、 (1)
(2)
【解析】
【分析】
(1)用代入法即可完成解答;
(2)先把方程组中的两个方程分别化简,再用加减法即可完成解答.
(1)
把①代入②得:
解得:x=1
把x=1代入①中,得y=2
所以原方程组的解为;
(2)
原方程组化简为
③−④得:5x=20
解得:x=4
把x=4代入④得:y=5.5
原方程组的解为.
【点睛】
本题考查了解二元一次方程组,根据方程组的特点灵活选取适当的方法解方程组;当方程组中的两个方程有括号或分母时,往往先把每个方程化简,再用代入法或加减法解.
4、 (1)是
(2)②
(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【解析】
【分析】
(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;
(2)根据小亮所列方程的意义求解即可;
(3)利用解一元一次方程和解二元一次方程组的方法求解即可.
(1)
解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,
∴以上两个方程(组)中x意义相同,
故答案为:是;
(2)
解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,
故答案为:②;
(3)
解:,
把①-②得:,解得,
把代入①得:,解得;
去分母得:,
去括号:,
移项得:,
合并得:,
系数化为1得:,
∴,
∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.
【点睛】
本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.
5、 (1)
(2)
(3)
【解析】
【分析】
(1)移项、合并同类项、系数化1,即可求解;
(2)去分母、去括号、移项、合并同类项、系数化1,即可求解;
(3)利用加减消元法求解方程组即可.
(1)
解:4x-2=2x+3,
移项,得4x-2x=3+2,
合并同类项,得2x=5,
系数化为1,得 ;
(2)
解:
去分母,得4(x+1)-9x=24,
去括号,得4x+4-9x=24,
移项,得4x-9x=24-4,
合并同类项,得-5x=20,
系数化为1,得x=-4;
(3)
解:
②-①×3,得x=-1,
把x=-1代入①,得-1-y=2,
解得y=-3,
故方程组的解为 .
【点睛】
本题考查一元一次方程及二元一次方程组的解法,解题的关键是熟知解题步骤.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练,共18页。试卷主要包含了有铅笔,已知二元一次方程组则等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共18页。试卷主要包含了二元一次方程的解可以是,下列方程是二元一次方程的是,已知方程组的解满足,则的值为等内容,欢迎下载使用。
这是一份初中冀教版第六章 二元一次方程组综合与测试同步达标检测题,共19页。试卷主要包含了若方程组的解为,则方程组的解为等内容,欢迎下载使用。