初中数学冀教版七年级下册第六章 二元一次方程组综合与测试测试题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试测试题,共19页。试卷主要包含了有下列方程组,方程组 消去x得到的方程是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个B.3个C.4个D.5个
2、二元一次方程组更适合用哪种方法消元( )
A.代入消元法B.加减消元法
C.代入、加减消元法都可以D.以上都不对
3、用代入消元法解关于、的方程组时,代入正确的是( )
A.B.
C.D.
4、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米B.80厘米C.100厘米D.120厘米
5、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A.B.
C.D.
6、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )
A.y=B.y=C.x=2y﹣11D.x=11﹣2y
7、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )
A.2B.3C.4D.5
8、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )
A.1个B.2个C.3个D.4个
9、方程组 消去x得到的方程是( )
A.y=4B.y=-14C.7y=14D.-7y=14
10、下列方程组中,二元一次方程组有( )
①;②;③;④.A.4个B.3个C.2个D.1个
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、一个两位数,个位上的数字比十位上的数字大3,将个位数字与十位数字交换位置所得到的新两位数比原两位数的3倍少1,则原两位数为_____.
2、,这个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做____.
二元一次方程组的条件:共含有____个未知数;每个方程都是____方程.
3、某次数学竞赛以60分为及格分数线,参加竞赛的所有学生的平均分为66分,而其中所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分.后来老师发现有一道题出错了,于是给每位学生的成绩加上5分;加分之后,所有成绩及格的学生的平均分变为了75分,所有成绩不及格的学生的平均分变为了59分;已知这次参赛学生人数介于15到30人之间,则参赛的学生有________人
4、根据条件“比x的一半大3的数等于y的2倍”中的数量关系列出方程为 _____.
5、在二元一次方程3x+y=12的解中,x和y是相反数的解是_______.
三、解答题(5小题,每小题10分,共计50分)
1、为缓解电力供需矛盾,促进能源绿色低碳发展,某市推行峰谷分时电价政策.峰谷分时电价为:峰时(8:00~22:00)每度电0.55元,谷时(22:00~次日8:00)每度电0.3元.小颖家10月份用电120度,缴纳电费61元.
(1)求小颖家10月份,峰时、谷时各用电多少度?
(2)为响应节电政策,小颖11月份计划将20%的峰时用电转移至谷时,这样在她用电量保持不变的情况下能节省电费多少元?
2、若m是一个两位数,与它相邻的11的整数倍的数为它的“邻居数”,与它最接近的“邻居数”为“最佳邻居数”,m的“最佳邻居数”记作n,令;
若m为一个三位数,它的“邻居数”则为111的整数倍,依次类推.
例如:50的“邻居数”为44与55,,,
∵,∴55为50的“最佳邻居数”,∴,
再如:492的“邻居数”为444和555,,,
∵,∴444是492的“最佳邻居数”.
(1)求和的值;
(2)若p为一个两位数,十位数字为a,个位数字为b,且.求p的值.
3、解方程组:
(1)
(2)
4、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.
(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?
(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.
5、对于数轴上的点和正数,给出如下定义:点在数轴上移动,沿负方向移动个单位长度后所在位置点表示的数是,沿正方向移动个单位长度后所在位置点表示的数是,与这两个数叫做“点的对称数”,记作,其中.
例如:原点表示,原点的对称数是.
(1)若点表示,则点的对称数,则 , ;
(2)若,求点表示的数及的值;
(3)己知,,若点、点从原点同时出发,沿数轴反向运动,且点的速度是点速度的倍,当时,请直接写出点表示的数.
-参考答案-
一、单选题
1、C
【解析】
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
2、B
【解析】
【分析】
由题意直接根据加减消元法和代入消元法的特点进行判断即可.
【详解】
解:,
①②,得,消去了未知数,
即二元一次方程组更适合用加减法消元,
故选:.
【点睛】
本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.
3、A
【解析】
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
4、D
【解析】
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
5、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
6、B
【解析】
【详解】
解:,
,
.
故选:B.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.
7、B
【解析】
【分析】
设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.
【详解】
解:设可以购进笔记本x本,中性笔y支,
依题意得: ,
∴ ,
∵x,y均为正整数,
∴ 或 或 ,
∴共有3种购买方案,
故选:B.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
8、B
【解析】
略
9、D
【解析】
【分析】
直接利用两式相减进而得出消去x后得到的方程.
【详解】
解:
①-②得:
-7y=14.
故答案为:-7y=14,
故选:D.
【点睛】
此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.
10、C
【解析】
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
二、填空题
1、14
【解析】
略
2、 二元一次方程组 两 一次
【解析】
略
3、28
【解析】
【分析】
设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.
【详解】
解:设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,
根据题意得,,
解得:,
所以x+y=n,
而15<n<30,n为正整数,n为整数,
所以n=5,
所以x+y=28,
即该班共有28位学生.
故答案为:28.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是学会利用参数.构建方程组的模型解决问题.
4、x+3=2y
【解析】
【分析】
根据题中比x的一半大3的数表示为:,y的2倍表示为:,列出方程即可得.
【详解】
解:比x的一半大3的数表示为:,y的2倍表示为:,
综合可得:,
故答案为:.
【点睛】
题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键.
5、
【解析】
【分析】
根据x和y是相反数可得x=﹣y,然后代入原方程求解即可.
【详解】
解:∵x和y是相反数,
∴x=﹣y,
把x=﹣y代入原方程中,可得:﹣3y+y=12,
解得:y=﹣6,
∴x=6,
∴在二元一次方程3x+y=12的解中,x和y是相反数的解是,
故答案为:.
【点睛】
本题考查二元一次方程的解,理解方程的解和互为相反数的概念是解题关键.
三、解答题
1、 (1)小颖家10月份峰时用电100度,谷时用电20度
(2)在她用电量保持不变的情况下能节省电费5元.
【解析】
【分析】
(1)设小颖家10月份峰时用电x度,谷时用电y度,根据“10月份用电120度,缴纳电费61元”列出二元一次方程组求解即可;
(2)计算出变化后的电费,用61相减即可.
(1)
设小颖家10月份峰时用电x度,谷时用电y度,根据题意得,
x+y=1200.55x+0.3y=61
解得,
答:小颖家10月份峰时用电100度,谷时用电20度
(2)
=
=5(元)
答:在她用电量保持不变的情况下能节省电费5元.
【点睛】
此题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
2、 (1),
(2)p的值为81.
【解析】
【分析】
(1)根据“最佳邻居数”的定义计算即可;
(2)先确定的范围,再分类讨论,确定“最佳邻居数”,根据题意列出方程求解即可.
(1)
解:∵83的邻居数为77和88,
∴,.
∵,
∴88是83的最佳邻居数,
∴.
∵268的邻居数为222和333,
∴,.
∵,
∴222是268的最佳邻居数.
∴.
(2)
解:∵,且,,
∴必大于34,
∴不会在300与333之间,.
情况1,当的最佳邻居数为333时,,
∴,
∴.
∵,,且为整数,
∴.
情况2,当的最佳邻居数为444时,,
∴,
∴.
∵,,且为整数此方程无解.
综上所述,p的值为81.
【点睛】
本题考查了新定义和二元一次方程,解题关键是准确理解题意,根据题意得出二元一次方程,求解正整数解.
3、 (1)
(2)
【解析】
【分析】
根据加减消元的方法求解即可.
(1)
解:,
由①-②得:,
∴,
把代入②,解得:,
∴方程组的解为;
(2)
解:方程组整理得:,
由①+②,得:,
∴,
把代入①,得:,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
4、 (1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)a=10.
【解析】
【分析】
(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组,解方程组即可;
(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.
(1)
解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克
根据题意,得,
解得,
答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)
解:,
整理得76500+1440a=90900,
解得:a=10,
经检验a=10是原方程的根,并符合题意.
【点睛】
本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.
5、 (1)
(2)
(3)
【解析】
【分析】
(1)读懂题干中的定义,利用定义进行求解;
(2)根据,列出关于的二元一次方程组求解即可;
(3)假设点的位置是,点的速度是点速度的2倍,点的位置是,此时,根据点的位置,可以算出,.根据点的位置,得出,,代入中,得到,解出即可.
(1)
解:,
,
故答案所示:;
(2)
解:,
,
解得:;
(3)
解:假设点的位置是,因为点的速度是点速度的2倍,所以点的位置是,
此时,根据点的位置,可以算出,,
根据点的位置,可以算出,,
代入中,得到,
解得:,
.
【点睛】
本题为创新型题目,解题的关键是重点在题目意思的理解,结合分析可以利用数形结合的方法求解,在掌握了题目含义的基础上,进行解答.注意“,的数值是关于对称”的运用.
相关试卷
这是一份2021学年第六章 二元一次方程组综合与测试练习题,共20页。试卷主要包含了二元一次方程的解可以是,若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知,则,有铅笔等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共16页。试卷主要包含了《九章算术》中记载等内容,欢迎下载使用。