数学第六章 二元一次方程组综合与测试达标测试
展开这是一份数学第六章 二元一次方程组综合与测试达标测试,共20页。试卷主要包含了若关于x等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、由方程组可以得出关于x和y的关系式是( )
A. B. C. D.
2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个 B.3个 C.4个 D.5个
3、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
4、已知是二元一次方程组的解,则m+n的值为( )
A. B.5 C. D.
5、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3 B.-2 C.2 D.无法计算
6、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
7、m为正整数,已知二元一次方程组有整数解则m2=( )
A.4 B.1或4或16或25
C.64 D.4或16或64
8、关于x,y的方程是二元一次方程,则m和n的值是( )
A. B. C. D.
9、中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头价值y两,根据题意可列方程组为( )
A. B. C. D.
10、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )
A.5个 B.6个 C.7个 D.8个
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、
2、使二元一次方程两边____的两个未知数的值,叫二元一次方程的一组解.
3、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x﹣5y=7的等模解是____.
4、在(1),(2),(3)这三组数值中,_______是方程x-3y=9的解,______是方程2x+y=4的解,_________是方程组的解.
5、关于x、y二元一次方程组的解满足,则k的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、对于任意一个四位数,若千位上的数字与百位上的数字之和是十位上的数字与个位上的数字之和的2倍,则称是“2倍和数”.如,因为,所以3504是“2倍和数”;,因为,所以6824不是“2倍和数”.
(1)判断6423,4816是否为“2倍和数”?并说明理由;
(2)对于“2倍和数”,当百位上的数字是个位上的数字的3倍,且各数位上的数字之和能被9整除时,记.求的最大值和最小值.
2、对于任意一个四位正整数m,若满足百位数字比千位数字大1,个位数字比十位数字大1,且各个数位上的数字不为零,我们就把这个数叫作“虎虎生威数”,将“虎虎生威数”m的千位、个位上的数字交换位置,百位、十位上的数字也交换位置,得到一个新的数,记.
(1)最小的虎虎生威数是______;______;
(2)已知p,q都是虎虎生威数,其中,(,:且均为整数),若,且满足是11的倍数,求p、q的值.
3、解方程组: .
4、解方程(组)
(1);
(2).
5、解方程组:
-参考答案-
一、单选题
1、C
【解析】
【分析】
分别用x,y表示m,即可得到结果;
【详解】
由,得到,
由,得到,
∴,
∴;
故选C.
【点睛】
本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.
2、C
【解析】
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
3、B
【解析】
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
4、B
【解析】
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
5、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
6、B
【解析】
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
7、D
【解析】
【分析】
把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.
【详解】
解:,
①-②得:(m-3)x=10,
解得:x=,
把x=代入②得:y=,
由方程组为整数解,得到m-3=±1,m-3=±5,
解得:m=4,2,-2,8,
由m为正整数,得到m=4,2,8
则=4或16或64,
故选:D.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
8、C
【解析】
【分析】
根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.
【详解】
解:由题意可得:,即
①+②得:,解得
将代入①得,
故
故选:C
【点睛】
此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.
9、A
【解析】
【分析】
直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别列出方程即可得出答案.
【详解】
解:设马每匹价值x两,牛每头价值y两,根据题意可列方程组为:
.
故选:A.
【点睛】
此题主要考查了二元一次方程组的应用,正确找到等量关系是解题关键.
10、D
【解析】
【分析】
设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.
【详解】
解:设原来的两位数为10a+b,根据题意得:
10a+b+9=10b+a,
解得:b=a+1,
因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.
故选:D.
【点睛】
本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.
二、填空题
1、2
【解析】
【分析】
将代入二元一次方程可得一个关于的方程,解方程即可得.
【详解】
解:由题意,将代入方程得:,
解得,
2、相等
【解析】
略
3、或
【解析】
【详解】
解:根据题意得:或,
解得:或,
故答案为:或.
【点睛】
本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.
4、 (1),(2) (1),(3) (1)
【解析】
【分析】
根据二元一次方程解的定义:使二元一次方程左右两边相等的一组未知数的值,分别将三组数值代入两个方程中求出各自的解,即可得到方程组的解.
【详解】
解:当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴是方程的解;
当时,方程的左边为:,方程左右两边不相等,
∴不是方程的解;
当时,方程的左边为:,方程左右两边相等,
∴不是方程的解;
∴方程组的解为;
故答案为:①(1),(2);②(1),(3);③(1).
【点睛】
本题主要考查了二元一次方程和二元一次方程组的解,数值二元一次方程解得定义是解题的关键.
5、8
【解析】
【分析】
转化方程组,求得解后,代入求值即可.
【详解】
∵,
解得,
∴,
∴k=8,
故答案为:8.
【点睛】
本题考查了二元一次方程组的解法,熟练构造新方程组是解题的关键.
三、解答题
1、 (1)6423是“2倍和数”, 4816不是“2倍和数”,理由见解析;
(2)最大值是3117,最小值是1107.
【解析】
【分析】
(1)根据定义进行判断即可
(2)设的个位上的数字为,十位上的数字为,则百位上的数字为,千位上的数字为,进而求得的各数位上的数字之和,根据,可得能被3整除,进而求二元一次方程的整数解即可,进而列出,即可求得的最大值和最小值.
(1)
,
∴6423是“2倍和数”,
,
∴4816不是“2倍和数”;
(2)
设的个位上的数字为,十位上的数字为,则百位上的数字为,
千位上的数字为,
,,,,为整数),
的各数位上的数字之和为,
各数位上的数字之和能被9整除,
能被3整除,
或,
,
,
,
的最大值是3117,最小值是1107.
【点睛】
本题考查了新定义,求二元一次方程的整数解,整除,理解新定义是解题的关键.
2、 (1)1212,4
(2),
【解析】
【分析】
(1)根据“虎虎生威数”的定义和进行计算求解即可;
(2)根据求出和,再根据是11的倍数,求出q的值,根据求出p的值即可.
(1)
解:根据“虎虎生威数”的定义可知千位上的数最小为1,则百位上的数为2,十位上的数最小为1,则个位上的数为2,最小的虎虎生威数是1212;
;
故答案为:1212,4.
(2)
解:∵p,q都是虎虎生威数,,
∴,,
;
同理;
∵是11的倍数,,
∴,
;
∵,
∴,即,
∵,
∴,
.
【点睛】
本题考查了新定义和二元一次方程,解题关键是准确理解题意,列出二元一次方程求解.
3、
【解析】
【分析】
由②①,得:④,由③②,得:⑤,再由由⑤④,得:,再将代入④,可得,然后将,代入①,可得,即可求解.
【详解】
解: ,
由②①,得:④,
由③②,得:⑤,
由⑤④,得:,
解得:,
将代入④,得:,
解得:,
将,代入①,得: ,
解得:
方程组的解为:.
【点睛】
本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.
4、 (1)
(2)
【解析】
【分析】
(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;
(2)把原方程组整理后,再利用加减消元法解答即可.
【小题1】
解:,
去分母得:,
去括号得:,
移项合并得:
解得:;
【小题2】
方程组整理得:,
①×5-②得:,
解得:,代入①中,
解得:,
所以原方程组的解为:.
【点睛】
此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法.
5、
【解析】
【分析】
原方程组化简后用代入消元法求解.
【详解】
解:原方程组化简,得
,
②×5+①,得
7x=-7,
∴x=-1,
把x=-1代入②,得
-1+y=2,
∴y=3,
∴.
【点睛】
本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练,共20页。试卷主要包含了若方程组的解为,则方程组的解为,已知方程组的解满足,则的值为,下列各式中是二元一次方程的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试同步测试题,共18页。试卷主要包含了有下列方程,已知二元一次方程组则,下列方程中,①x+y=6;②x,若是方程组的解,则的值为等内容,欢迎下载使用。
这是一份2021学年第六章 二元一次方程组综合与测试练习题,共19页。