初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共22页。
冀教版七年级下册第六章二元一次方程组定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个2、若方程组的解为,则方程组的解为( )A. B.C. D.3、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.4、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )A.y= B.y= C.x=2y﹣11 D.x=11﹣2y5、下列方程组中,属于二元一次方程组的是( )A. B.C. D.6、m为正整数,已知二元一次方程组有整数解则m2=( )A.4 B.1或4或16或25C.64 D.4或16或647、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元8、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )A.2种 B.3种 C.4种 D.5种9、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.10、在沙县国际连锁早餐店里,李大爷买5个馒头、3个包子,老板少拿2元,只要17元;张大妈买11个馒头、5个包子,老板以售价的九折优惠,只要33.3元.若馒头每个元,包子每个元,依题意可列方程组为( )A. B.C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、关于x、y的二元一次方程组的解满足,则m的值是_______.2、已知等式(2A﹣7B)x+(3A﹣8B)=8x+10,对一切实数x都成立,则A+B=_____.3、若关于x,y的方程是二元一次方程,则的值是__________.4、某服装厂生产一批某种款式的秋装,已知每2m的某种布料可做上衣的衣身3个或衣袖5只,现计划用132m这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料做衣身和衣袖,才能使做的衣身和衣袖恰好配套?解:设用xm布料做衣身,用ym布料做衣袖.根据题意得:解得:___________所以,用60m布料做衣身,用72m布料做衣袖,才能使衣身和衣袖恰好配套.5、成成和昊昊分别解答完成了20道数学试题,若答对了一题可以加上一个两位数的分数,答错了一题则要减去另一个两位数的分数,最终,成成得了333分,昊昊得了46分,那么,答错一题时应减去的分数为______分.三、解答题(5小题,每小题10分,共计50分)1、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.2、解方程组:.3、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.(1)填空:当时,______;当时,______;(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)4、解方程组5、解下列方程或方程组:(1)4x-2 =2x+3(2)(3) -参考答案-一、单选题1、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.2、B【解析】【分析】由整体思想可得,求出x、y即可.【详解】解:∵方程组的解为,∴方程组的解,∴;故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.3、A【解析】【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.4、B【解析】【详解】解:,,.故选:B.【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.5、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;、该方程组符合二元一次方程组的定义,故本选项符合题意;、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6、D【解析】【分析】把m看作已知数表示出方程组的解,由方程组的解为整数解确定出m的值,代入原式计算即可求出值.【详解】解:,①-②得:(m-3)x=10,解得:x=,把x=代入②得:y=,由方程组为整数解,得到m-3=±1,m-3=±5,解得:m=4,2,-2,8,由m为正整数,得到m=4,2,8则=4或16或64,故选:D.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7、B【解析】【分析】设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.【详解】解:设每件商品标价x元,进价y元则根据题意得:,解得:,答:该商品每件进价155元,标价每件200元.故选:B.【点睛】本题考查了二元一次方程的应用,找出正确等量关系是解题关键.8、B【解析】【分析】设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.【详解】解:设租A型车x辆,租B型车y辆,根据题意列方程得,∴,∵均为正整数,∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,∴=28,解得x=1,,∴=24,解得,,∴=20,解得,∴=16,解得x=5,,∴=12,解得,∴=8,解得,∴=4,解得x=9,,∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.故选择B.【点睛】本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.9、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.10、B【解析】【分析】设馒头每个元,包子每个元,根据李大爷买5个馒头、3个包子的钱数等于元,张大妈买11个馒头、5个包子的钱数等于元列出二元一次方程组即可【详解】解:设馒头每个元,包子每个元,根据题意得故选B【点睛】本题考查了列二元一次方程组,求得张大妈买的包子和馒头没打折时的钱数等于元是解题的关键.二、填空题1、2【解析】【分析】先两式相加得,再整体代入方程5x+y=得到关于m的方程,解方程即可求出m的值.【详解】解:,①+②得,把代入5x+y=得,解得m=2,故答案为:2.【点睛】本题考查了用加减消元法解二元一次方程组,同时也考查了求一元一次方程的解.整体代入是解题的关键.2、##0.4【解析】【分析】根据关键语“等式(2A﹣7B)x+(3A﹣8B)=8x+10对一切实数x都成立”,只要让等式两边x的系数和常数分别相等即可列出方程组求解.【详解】解:(2A﹣7B)x+(3A﹣8B)=8x+10,∴,解得:,则A+B=,故答案为:.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.3、0【解析】【分析】根据二元一次方程的定义含有两个未知数并且含未知数的项的次数为1的方程是二元一次方程,建立方程组计算即可.【详解】解:∵关于,的方程是二元一次方程,∴,解得,∴mn=0,故答案为:0.【点睛】本题考查了二元一次方程的定义,二元一次方程组的解法,代数式的值,根据方程的定义构造方程组是解题的关键.4、【解析】略5、10【解析】【分析】设成成答对了道,昊昊答对了道,答对了一题加上的分数为分,答错一题时应减去的分数为,根据题意列出方程组即可求解,进而根据确定,根据整除,可得或,进而即可求得,代入即可求得的值.【详解】设成成答对了道,昊昊答对了道,答对了一题加上的分数为a分,答错一题时应减去的分数,根据题意,得①-②得: 代入②得都是整数,则也是整数,且个位数为0,则或当时,,当时,,不符合题意,故答案为:【点睛】本题考查了二元一次方程组的应用,整除,根据题意列出方程组是解题的关键.三、解答题1、 (1)12,24,36,48;(2)(3)【解析】【分析】(1)设这个本原数的十位数字为x,个位数字为y,有,得的关系,进而得到答案.(2)设这个本原数的十位数字为x,个位数字为y,有,得的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x,个位数字为y.则由题意可列方程组,两式相加求解即可.(1)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x,个位数字为y.由题意知:解得∴满足条件的数为27,它的奇异数是72∴∴;(3)解:设这个本原数的十位数字为x,个位数字为y.由题意知:①+②得∴【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.2、【解析】【分析】由①②相加消去y,与③组成关于x、 z的二元-次方程组, 进一步解二元一次方程组, 求得答案即可.【详解】解:①+②得,3x+z=6④③④组成二元一次方程组得,解得,代入①得,y=2,∴原方程组的解为.【点睛】本题考查三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解方程组较简单.3、 (1)(2)证明见解析(3)或.【解析】【分析】(1)根据新定义分别求解即可;(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.(1)解:由新定义可得: 当时, 故答案为:(2)解:设“万象数”为 则其为 则而 所以其“格致数” 所以其“格致数”都能被9整除.(3)解:是的倍数,是的倍数,是的倍数, ,,,a,b,c为整数, 或或或或 或或或或或 而,的值为:或或或或或 是完全平方数,的值为:或.【点睛】本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.4、【解析】【分析】解法一:将方程②变形,利用代入法求解;解法二:将方程②乘以2,利用加减法求解.【详解】解:,解法一:由②,得x=-2y.③ 将③代入①,得-6y+4y=6. 解这个一元一次方程,得y=-3. 将y=-3代入③,得x=6. 所以原方程组的解是. 解法二:②×2,得2x+4y=0.③ ①-③,得x=6. 将x=6代入②,得y=-3. 以原方程组的解是 .【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的方法:代入法和加减法,并根据每个方程的特点选择适合的解法是解题的关键.5、 (1)(2)(3)【解析】【分析】(1)移项、合并同类项、系数化1,即可求解;(2)去分母、去括号、移项、合并同类项、系数化1,即可求解;(3)利用加减消元法求解方程组即可.(1)解:4x-2=2x+3,移项,得4x-2x=3+2,合并同类项,得2x=5,系数化为1,得 ;(2)解: 去分母,得4(x+1)-9x=24,去括号,得4x+4-9x=24,移项,得4x-9x=24-4,合并同类项,得-5x=20,系数化为1,得x=-4;(3)解:②-①×3,得x=-1,把x=-1代入①,得-1-y=2,解得y=-3,故方程组的解为 .【点睛】本题考查一元一次方程及二元一次方程组的解法,解题的关键是熟知解题步骤.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试精练,共18页。试卷主要包含了有下列方程等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了若关于x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测,共19页。