![2022年冀教版七年级下册第六章二元一次方程组专题练习试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12716764/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第六章二元一次方程组专题练习试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12716764/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第六章二元一次方程组专题练习试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12716764/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第六章 二元一次方程组综合与测试同步练习题
展开
这是一份2021学年第六章 二元一次方程组综合与测试同步练习题,共18页。
冀教版七年级下册第六章二元一次方程组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )A.5个 B.6个 C.7个 D.8个2、下列方程中,①x+y=6;②x(x+y)=2;③3x-y=z+1;④m+=7是二元一次方程的有( )A.1个 B.2个 C.3个 D.4个3、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )A.1.2元 B.1.05元 C.0.95元 D.0.9元4、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=05、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )A.1 B.﹣1 C.2 D.﹣26、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )A. B. C. D.7、下列方程中,是二元一次方程组的是( )A. B. C. D.8、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )A.60厘米 B.80厘米 C.100厘米 D.120厘米9、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )A.291 B.292 C.293 D.29410、方程x+y=6的正整数解有( )A.5个 B.6个 C.7个 D.无数个第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、方程组的解是:________.2、一般地,二元一次方程组的两个方程的____,叫做二元一次方程组的解.3、已知二元一次方程组为,则2x﹣2y的值为 _____.4、解二元一次方程组有___________和___________.5、请写出一个二元一次方程组______,使它的解为.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、解方程组:(1)(2)3、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?小明所列方程: 小亮所列方程:根据以上信息,解答下列问题.(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.4、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.5、解方程组 -参考答案-一、单选题1、D【解析】【分析】设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.【详解】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.【点睛】本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.2、A【解析】【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x+y=6是二元一次方程;②x(x+y)=2,即不是二元一次方程;③3x-y=z+1是三元一次方程;④m+=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.3、B【解析】【分析】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.【详解】设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据题意得:,②–①可得:.故选:B.【点睛】本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.4、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.5、C【解析】【分析】先求出的解,然后代入kx+y=7求解即可.【详解】解:联立,②-①,得-3y=3,∴y=-1,把y=-1代入①,得x-1=3∴x=4,∴,代入kx+y=7得:4k﹣1=7,∴k=2,故选:C.【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.6、C【解析】【分析】根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:.由每2人共乘一车,最终剩余9个人无车可乘可得:.该二元一次方程组为:.故选:C.【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.7、B【解析】【分析】根据二元一次方程组的定义解答.【详解】解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;B符合定义,故是二元一次方程组;C中含有分式,故不符合定义;D含有三个未知数,故不符合定义;故选:B.【点睛】此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.8、D【解析】【分析】设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;【详解】设小长方形的长为x,小长方形的宽为y,根据题意可得:,解得:,∴每个小长方形的周长是;故选D.【点睛】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.9、C【解析】【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.【详解】解:设连续搭建等边三角形x个,连续搭建正六边形y个,由题意,得,解得.故选C.【点睛】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.10、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令进而求得对应的值即可【详解】解:方程的正整数解有,,,,共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.二、填空题1、【解析】【分析】利用加减消元法解题.【详解】解: ①+②×3得:把代入②得,故答案为:.【点睛】本题考查加减法解二元一次方程组,是重要考点,掌握相关知识是解题关键.2、公共解【解析】略3、-2【解析】【分析】利用整体思想,两式相减得到x-y=-1,整体代入到代数式中求值即可.【详解】解:①-②得:x﹣y=﹣1,∴2x﹣2y=2(x﹣y)=2×(﹣1)=﹣2,故答案为:﹣2.【点睛】本题考查了二元一次方程组的应用,利用整体思想,两式相减得到x-y=-1是解题的关键.4、 代入消元法 加减消元法【解析】略5、(答案不唯一)【解析】【分析】根据二元一次方程组的解找到x与y的数量关系,然后列出方程组即可.【详解】解:∵二元一次方程组的解为,∴这个方程组可以是,故答案为:(答案不唯一),【点睛】本题考查的是二元一次方程组解的定义,解答此题的关键是把方程的解代入各组方程中,看各方程是否成立.三、解答题1、 (1)(2)【解析】【分析】用代入消元法或加减消元法解二元一次方程即可.(1)原方程可转化为,由①,得③,把③代入②,得,把代入①,得,故原方程组的解为.(2)原方程组可转化为,由①×4+②×5得:,解得,把代入②式得:,故原方程组的解为.【点睛】本题考查了解二元一次方程组,把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代人消元法,简称代入法.当二元一次方程组的两个方程中间一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.2、 (1)(2)【解析】【分析】(1) 利用加减消元法求出解即可;(2) 方程组整理后,利用加减消元法求出解即可.(1)解:,①+②得,3x=9,即x=3,把x=3代入①得,y=2,则方程组的解为;(2)解:方程组整理得:,①×2+②得,y=5,把y=5代入①得,x=4,则方程组的解为【点睛】本题考查二元一次方程组的解法.关键是熟练掌握代入消元法和加减消元法的应用.3、 (1)是(2)②(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【解析】【分析】(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;(2)根据小亮所列方程的意义求解即可;(3)利用解一元一次方程和解二元一次方程组的方法求解即可.(1)解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,∴以上两个方程(组)中x意义相同,故答案为:是;(2)解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,故答案为:②;(3)解:,把①-②得:,解得,把代入①得:,解得;去分母得:,去括号:,移项得:,合并得:,系数化为1得:,∴,∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【点睛】本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.4、【解析】【详解】解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以,整理,得:④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。5、【解析】【分析】把方程组整理后,利用加减消元法求解即可.【详解】解:原方程组可化为,②-①得:6y=12,解得:y=2,代入①中,解得:x=,∴方程组的解为.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共17页。试卷主要包含了已知是方程的解,则k的值为,有下列方程,《九章算术》中记载等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共20页。试卷主要包含了若关于x,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试随堂练习题,共17页。试卷主要包含了若方程组的解为,则方程组的解为,二元一次方程的解可以是等内容,欢迎下载使用。