搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年冀教版七年级下册第六章二元一次方程组定向测试试题(含答案解析)

    2021-2022学年冀教版七年级下册第六章二元一次方程组定向测试试题(含答案解析)第1页
    2021-2022学年冀教版七年级下册第六章二元一次方程组定向测试试题(含答案解析)第2页
    2021-2022学年冀教版七年级下册第六章二元一次方程组定向测试试题(含答案解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后练习题

    展开

    这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后练习题,共20页。试卷主要包含了下列方程组中,二元一次方程组有,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
    冀教版七年级下册第六章二元一次方程组定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、已知是二元一次方程,则的值为(       A. B.1 C. D.22、下列方程是二元一次方程的是(  )A.xxy=1 B.x2y﹣2x=1 C.3xy=1 D.﹣2y=13、下列方程中,①xy=6;②xxy)=2;③3xyz+1;④m=7是二元一次方程的有(       A.1个 B.2个 C.3个 D.4个4、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为(     A.2 B.1 C.﹣1 D.﹣25、用加减消元法解二元一次方程组时,下列方法中无法消元的是(       A. B. C. D.6、下列方程组中,二元一次方程组有(     ;②;③;④.A.4个 B.3个 C.2个 D.1个7、关于xy的方程是二元一次方程,则mn的值是(       A. B. C. D.8、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为(            A. B.C. D.9、若关于xy的方程是二元一次方程,则m的值为(       A.﹣1 B.0 C.1 D.210、在下列各组数中,是方程组的解的是(       A. B. C. D.第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为ABC三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知ABC三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.2、某销售商十月份销售XYC三种糖果的数量之比2∶1∶1,XYC三种糖果的单价之比为1∶3∶4.十一月份该销售商为了迎接双“十一”加大了宣传力度.预计三种糖果的营业额都会增加.其中X种糖果增加的营业额占总增加的营业额的,此时,X种糖果的营业额与十一月份三种糖果总营业颁之比为3∶8,为使十一月份YC两种糖果的营业额之比为2∶3,则十一月份C种糖果增加的营业额与十一月份总营业额之比为____.3、若,则的值为______.4、含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做____.判断一个方程是否为二元一次方程:(1)二元一次方程的条件:①____方程;②只含____个未知数;③两个未知数系数都不为____;④含有未知数的项的次数都是____.(2)二元一次方程的一般形式:axbyca≠0,b≠0).5、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.三、解答题(5小题,每小题10分,共计50分)1、下面是学习二元一次方程组时,老师提出的问题和两名同学所列的方程.问题:某个工人一天工作6个小时,可以生产零件一整箱和不足一箱的20个;由于特殊情况,今天他只工作4个小时,生产零件一整箱和不足一箱的4个,问这一箱零件和该工人每小时能生产的零件数分别是多少?小明所列方程:   小亮所列方程:根据以上信息,解答下列问题.(1)以上两个方程(组)中意义是否相同?______(填“是”或“否”);(2)小亮的方程所用等量关系______(填序号,“①每个小时生产的零件数”或“②4个小时生产的零件数相等”);(3)从以上两个方程(组)中任选一个求解,完整解答老师提出的问题.2、解方程组:3、解方程组:(1)(2)4、解方程(组):(1)(2)5、某商店出售两种规格口罩,2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩,大盒与小盒每盒各装多少个口罩? -参考答案-一、单选题1、C【解析】【分析】根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.【详解】解:∵是二元一次方程, ,且解得:故选:C【点睛】本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.2、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、xxy=1含有两个未知数,但未知数的最高次数是2次,xxy=1不是二元一次方程;B、x2y﹣2x=1含有两个未知数.未知数的最高次数是2次,x2y﹣2x=1不是二元一次方程;C、3xy=1含有两个未知数,未知数的最大次数是1次,∴3xy=1是二元一次方程;D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.3、A【解析】【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①xy=6是二元一次方程;xxy)=2,即不是二元一次方程;③3xyz+1是三元一次方程;m=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.4、A【解析】【分析】x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.【详解】x=2,y=﹣1是方程ax+y=3的一组解,∴2a-1=3,解得a=2,故选A【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.5、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.6、C【解析】【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:①、符合二元一次方程组的定义,故①符合题意;②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;③、符合二元一次方程组的定义,故③符合题意;④、该方程组中第一个方程是二次方程,故④不符合题意.故选:【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.7、C【解析】【分析】根据二元一次方程组的定义,得到关于的二元一次方程组,然后求解即可.【详解】解:由题意可得:,即①+②得:,解得代入①得,故选:C【点睛】此题考查了二元一次方程组的定义以及加减消元法求解二元一次方程组,解题的关键是理解二元一次方程组的定义以及掌握二元一次方程组的求解方法.8、C【解析】【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.9、C【解析】【分析】根据二元一次方程的定义得出,再求出答案即可.【详解】解:∵关于xy的方程是二元一次方程,解得:m=1,故选C【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.10、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.二、填空题1、360【解析】【分析】由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于xyz的三元一次方程组,解之可得出2z=3y,结合yz均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.【详解】解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,依题意得:∴2z=3y又∵xyz均为一位正整数,z为3的倍数.z=3时,x=,不合题意,舍去;z=6时,x=3,此时y=4;z=9时,x=,不合题意,舍去.∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).故答案为:360.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.2、【解析】【分析】根据三种糖果的数量比、单价比,可以按照比例设未知数,即10月份XYC三种糖果的销售的数量和单价分别为2xxxy、3y、4y,则10月份XYC三种糖果的销售额比为2:3:4.因问题中涉及到X的10月销售数量,因此可以设11月份X增加的营业额为7x,则11月份总增加的营业额为15x;再根据X种糖果的营业额与十一月份三种糖果总营业额之比为3:8,建立等式,求出x.可以根据十一月份YC两种糖果的营业额之比为2:3算出十一月份C种糖果增加的营业额即可求解.【详解】解:设10月份XYC三种糖果的销售的数量分别为2xxx;单价分别为y、3y、4y∴10月份XYC三种糖果的销售额分别为2xy,3xy,4xyX种糖果增加的营业额占总增加的营业额的∴设11月份X增加的营业额为7x,则11月份总增加的营业额为15xX种糖果的营业额与十一月份三种糖果总营业额之比为3:8,∴(7x+2xy):(15x+9xy)=3:8,解得x=xy∴十一月份X种糖果的营业额为9xy,三种糖果总营业额为24xyYC两种糖果的营业额之和为15xy若十一月份YC两种糖果的营业额之比为2:3,YC两种糖果的营业额分别为6xy,9xyC种糖果增加的营业额为9xy-4xy=5xy∴十一月份C种糖果增加的营业额与十一月份总营业额之比为5xy:24xy=5:24.【点睛】本题考查了三元一次方程组的应用,掌握用代数式表示每个参数,并用整体法解题是关键.3、##【解析】【分析】根据绝对值和平方的非负性,列出方程组,可得,再代入,即可求解.【详解】解:∵解得:故答案为:【点睛】本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.4、     二元一次方程     整式          0     1【解析】5、58【解析】【分析】设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于xy的二元一次方程组,解之即可得出xy的值,再将其代入(10x+y)中即可求出结论.【详解】解:设原来的两位数的十位数字为x,个位数字为y依题意得:解得:∴10x+y=58.故答案为:58.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题1、 (1)是(2)②(3)这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【解析】【分析】(1)根据所列方程分别得到小明和小亮所列方程中x的意义即可得到答案;(2)根据小亮所列方程的意义求解即可;(3)利用解一元一次方程和解二元一次方程组的方法求解即可.(1)解:由小明所列方程的意义可知,小明方程中x表示的是这一箱零件的个数,而由小亮所列方程的意义可知,小亮方程中的x表示的是这一箱零件的个数,∴以上两个方程(组)中x意义相同,故答案为:是;(2)解:根据小亮所列方程的意义可知小亮的方程所用等量关系4个小时生产的零件数相等,故答案为:②;(3)解:把①-②,解得代入①得:,解得去分母得:去括号:移项得:合并得:系数化为1得:∴这一箱零件和该工人每小时能生产的零件数分别是28个、8个.【点睛】本题主要考查了一元一次方程和二元一次方程组的应用,正确理解所列方程的意义是解题的关键.2、【解析】【分析】先将三元一次方程化为二元一次方程组,再化为一元一次方程即可解答本题.【详解】解:②,得④,③,得⑤,⑤,得解得代入④,得代入②,得所以原方程组的解是【点睛】本题考查解三元一次方程组,解题的关键是明确消元的数学思想,会解三元一次方程组.3、 (1)(2)【解析】【分析】(1)用加法消元法求解;(2)用减法消元法求解.(1)①+②得: x=3代入①中得:     ∴原方程组的解是(2)将方程组变形为,得③,③-①,得代入②,得∴原方程组的解是【点睛】本题考查了二元一次方程组的解法,根据题目特点,灵活选择解题方法是解题的关键.4、(1);(2)【解析】【分析】(1)先去分母,然后再求解一元一次方程即可;(2)利用代入消元法进行求解二元一次方程组即可.【详解】解:(1)去分母得:去括号得:移项、合并同类项得:系数化为1得:(2)把①代入②得:解得:代入①得:∴原方程组的解为【点睛】本题主要考查一元一次方程及二元一次方程组的解法,熟练掌握一元一次方程及二元一次方程组的解法是解题的关键.5、大盒每盒装20个口罩,小盒每盒装10个口罩.【解析】【分析】设大盒每盒装个口罩,小盒每盒装个口罩,根据“2大盒、4小盒共装80个口罩;3大盒、5小盒共装110个口罩”建立方程组,解方程组即可得.【详解】解:设大盒每盒装个口罩,小盒每盒装个口罩,由题意得:解得,符合题意,答:大盒每盒装20个口罩,小盒每盒装10个口罩.【点睛】本题考查了二元一次方程组的应用,正确建立方程组是解题关键. 

    相关试卷

    初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练:

    这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共19页。试卷主要包含了《孙子算经》记载等内容,欢迎下载使用。

    七年级下册第六章 二元一次方程组综合与测试课后作业题:

    这是一份七年级下册第六章 二元一次方程组综合与测试课后作业题,共18页。

    2021学年第六章 二元一次方程组综合与测试练习题:

    这是一份2021学年第六章 二元一次方程组综合与测试练习题,共19页。试卷主要包含了已知二元一次方程组则等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map