开学活动
搜索
    上传资料 赚现金

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含答案及详细解析)

    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含答案及详细解析)第1页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含答案及详细解析)第2页
    2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合练习试题(含答案及详细解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后作业题,共31页。试卷主要包含了在平面直角坐标系中,点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。
    七年级数学第二学期第十五章平面直角坐标系综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、点A(-3,1)到y轴的距离是(  )个单位长度.
    A.-3 B.1 C.-1 D.3
    2、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为(  )
    A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
    3、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4、在△ABC中,AB=AC,点B,点C在直角坐标系中的坐标分别是(2,0),(﹣2,0),则点A的坐标可能是( )
    A.(0,2) B.(0,0) C.(2,﹣2) D.(﹣2,2)
    5、在平面直角坐标系中,点P(-2,3)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
    A.2 B.-2 C.4 D.-4
    7、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、已知点M(m,﹣1)与点N(3,n)关于原点对称,则m+n的值为(  )
    A.3 B.2 C.﹣2 D.﹣3
    9、若点在第一象限,则a的取值范围是( )
    A. B. C. D.无解
    10、小明在介绍郑州外国语中学位置时,相对准确的表述为( )
    A.陇海路以北 B.工人路以西
    C.郑州市人民政府西南方向 D.陇海路和工人路交叉口西北角
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若点在y轴上,则m=_____.
    2、在平面直角坐标系中,点在轴上,则点的坐标为________.
    3、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.

    4、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.
    5、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),

    (1)写出A、B两点的坐标;
    (2)画出△ABC关于y轴对称的△A1B1C1 ;
    (3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
    2、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).

    (1)画出△ABC关于y轴对称的△A1B1C1;
    (2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;
    (3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.
    3、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
    (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
    (2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.

    4、(探索发现)等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、B分别是y轴、x轴上两个动点, 直角边 AC 交x轴于点D,斜边BC交y轴于点E

    (1)如图1,已知C点的横坐标为﹣1,请直接写出点A的坐标
    (2)如图2,当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE
    (拓展应用)
    (3)如图3,若点A在x轴上,且A(﹣4,0),点B在y轴的正半轴上运动时,分别以OB、 AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连接CD交y轴于点P,当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请直接写出BP的长度为
    5、如图,三角形的项点坐标分别为,,.

    (1)画出三角形关于点的中心对称的,并写出点的坐标;
    (2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
    6、如图所示,在平面直角坐标系中,已知,,.
    (1)在平面直角坐标系中画出,并求出的面积;
    (2)在(1)的条件下,把先关于y轴对称得到,再向下平移3个单位得到,则中的坐标分别为( ),( ),( );(直接写出坐标)
    (3)已知为轴上一点,若的面积为4,求点的坐标.

    7、如图,在平面直角坐标系中,已知线段AB;
    (1)请在y轴上找到点C,使△ABC的周长最小,画出△ABC,并写出点C的坐标;
    (2)作出△ABC关于y轴对称的△A'B'C';
    (3)连接BB',AA'.求四边形AA'B'B的面积.

    8、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).

    (1)如图1,在BC上找一点P,使∠BAP=45°;
    (2)如图2,作△ABC的高BH.
    9、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
    (1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
    (2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2的坐标.

    10、已知A(-1,3),B(4,2),C(2,-1).
    (1)在平面直角坐标系中,画出△ABC及△ABC关于y轴的对称图形△A1B1C1;
    (2)P为x轴上一点,请在图中标出使△PAB的周长最小时的点P,并根据图象直接写出此时点P的坐标 .


    -参考答案-
    一、单选题
    1、D
    【分析】
    由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
    【详解】
    解:由题意知到轴的距离为
    到轴的距离是个单位长度
    故选D.
    【点睛】
    本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
    2、B
    【分析】
    根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
    【详解】
    解:∵点P(m+3,2m+4)在x轴上,
    ∴2m+4=0,
    解得:m=-2,
    ∴m+3=-2+3=1,
    ∴点P的坐标为(1,0).
    故选:B.
    【点睛】
    本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
    3、A
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    4、A
    【分析】
    由题意可知BO=CO,又AB=AC,得点A在y轴上,即可求解.
    【详解】
    解:由题意可知BO=CO,
    ∵又AB=AC,
    ∴AO⊥BC,
    ∴点A在y轴上,
    ∴选项A符合题意,
    B选项三点共线,不能构成三角形,不符合题意;
    选项C、D都不在y轴上,不符合题意;
    故选:A.
    【点睛】
    本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置.
    5、B
    【分析】
    根据点横纵坐标的正负分析得到答案.
    【详解】
    解:点P(-2,3)在第二象限,
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
    6、A
    【分析】
    直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
    【详解】
    解:依题意可得a=-1,b=3
    ∴a+b=2
    故选A.
    【点睛】
    此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
    7、B
    【分析】
    设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
    【详解】
    解:∵设内任一点A(a,b)在第三象限内,
    ∴a<0,b<0,
    ∵点A关于x轴对称后的点B(a,-b),
    ∴﹣b>0,
    ∴点B(a,-b)所在的象限是第二象限,即在第二象限.
    故选:B.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
    8、C
    【分析】
    利用两个点关于原点对称时,它们的坐标符号相反,即点关于原点的对称点是,进而求出即可.
    【详解】
    解:点与点关于原点对称,
    ,,
    故.
    故选:C.
    【点睛】
    本题主要考查了关于原点对称点的坐标,解题的关键是正确掌握关于原点对称点的性质.
    9、B
    【分析】
    由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
    【详解】
    解: 点在第一象限,

    由①得:
    由②得:

    故选B
    【点睛】
    本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
    10、D
    【分析】
    根据位置的确定需要两个条件:方向和距离进行求解即可.
    【详解】
    解:A、陇海路以北只有方向,不能确定位置,故不符合题意;
    B、工人路以西只有方向,不能确定位置,故不符合题意;
    C、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;
    D、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意;
    故选D.
    【点睛】
    本题主要考查了确定位置,熟知确定位置的条件是解题的关键.
    二、填空题
    1、-4
    【分析】
    在轴上点的坐标,横坐标为,可知,进而得到的值.
    【详解】
    解:在轴上


    故答案为:.
    【点睛】
    本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.
    2、(10,0)
    【分析】
    利用点在轴上的坐标特征,得到纵坐标为0,求出的值,代入横坐标,即可求出点坐标.
    【详解】
    解:点在轴上,
    ,故,
    点横坐标为10,
    故点坐标为(10,0).
    故答案为:(10,0).
    【点睛】
    本题主要是考查了轴上点的坐标特征,熟练掌握轴上的点的纵坐标为0,是解题的关键.
    3、学习
    【分析】
    根据每一个点的坐标确定其对应的位置,最后写出答案.
    【详解】
    解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,
    组成的英文单词为study,中文为学习,
    故答案为:学习.
    【点睛】
    此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.
    4、-3
    【分析】
    点P在y轴上则该点横坐标为0,可解得m的值.
    【详解】
    解:在y轴上,
    ∴m+3=0,
    解得m=-3.
    故答案为:-3.
    【点睛】
    本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
    5、
    【分析】
    连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.
    【详解】
    解:如图,连接AD,BD,

    在正六边形ABCDEF中,,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
    ∴6次一个循环,
    ∵,
    ∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,
    故答案为:.
    【点睛】
    此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.
    三、解答题
    1、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
    【分析】
    (1)根据 A,B 的位置写出坐标即可;
    (2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
    (3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
    【详解】
    (1)由题意 A(-1,2),B(-3,1).
    (2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A1(1,2),B1(3,1),C1(0,-1),
    在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
    如图△A1B1C1即为所求.
    (3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
    ∵A(-1,2),B(-3,1).C(0,-1),
    ∴A2、B2、C2的横坐标分别为1,3,0,
    纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
    ∴A2(1,-4)、B2(3,-3)、C2(0,-1),
    在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
    如图△A2B2C2即为所求.

    【点睛】
    本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
    2、(1)见解析;(2)见解析;(3)(﹣4,﹣3)
    【分析】
    (1)分别作出A,B,C 的对应点A1,B1,C1即可.
    (2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
    (3)根据所画图形,直接写出坐标即可.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求;
    (2)如图所示,△A2B2C2即为所求;

    (3)点B2的坐标为(﹣4,﹣3).
    【点睛】
    本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    3、(1)6,30°;(2)见解析,30
    【分析】
    (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
    (2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
    【详解】
    (1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
    答案:6,30°
    (2)如图所示:

    ∵A(5,30),B(12,120),
    ∴∠BOX=120°,∠AOX=30°,
    ∴∠AOB=90°,
    ∵OA=5,OB=12,
    ∴△AOB的面积为OA·OB=30.
    【点睛】
    本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
    4、(1)A(0,1);(2)见解析;(3)不变,2
    【分析】
    (1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△BAO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
    (2)过点C作CG⊥AC交y轴于点G,则△ACG≌△BAD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
    (3)BP的长度不变,理由如下:如图(3),过点C作CH⊥y轴于点H,构建全等三角形:△CBH≌△BAO(AAS),结合全等三角形的对应边相等推知:CH=BO,BH=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPH≌△DPB,故BP=HP=2.
    【详解】
    解:(1)如图(1),过点C作CF⊥y轴于点F,

    ∵CF⊥y轴于点F,
    ∴∠CFA=90°,∠ACF+∠CAF=90°,
    ∵∠CAB=90°,
    ∴∠CAF+∠BAO=90°,
    ∴∠ACF=∠BAO,
    在△ACF和△ABO中,

    ∴△ACF≌△BAO(AAS),
    ∴CF=OA=1,
    ∴A(0,1);
    (2)如图2,过点C作CG⊥AC交y轴于点G,

    ∵CG⊥AC,
    ∴∠ACG=90°,∠CAG+∠AGC=90°,
    ∵∠AOD=90°,
    ∴∠ADO+∠DAO=90°,
    ∴∠AGC=∠ADO,
    在△ACG和△ABD中,,
    ∴△ACG≌△BAD(AAS),
    ∴CG=AD=CD,∠ADB=∠AGC,
    ∵∠ACB=45°,∠ACG=90°,
    ∴∠DCE=∠GCE=45°,
    在△DCE和△GCE中,,
    ∴△DCE≌△GCE(SAS),
    ∴∠CDE=∠AGC,
    ∴∠ADB=∠CDE;
    (3)BP的长度不变,理由如下:
    如图,过点C作CH⊥y轴于点H.

    ∵∠ABC=90°,
    ∴∠CBH+∠ABO=90°.
    ∵∠BAO+∠ABO=90°,
    ∴∠CBH=∠BAO.
    ∵∠CHB=∠AOB=90°,AB=AC,
    ∴△CBH≌△BAO(AAS),
    ∴CH=BO,BH=AO=4.
    ∵BD=BO,
    ∴CH=BD.
    ∵∠CHP=∠DBP=90°,∠CPE=∠DPB,
    ∴△CPH≌△DPB(AAS),
    ∴BP=HP=2.
    故答案为:2.
    【点睛】
    本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
    5、(1)图见解析,;(2)图见解析,
    【分析】
    (1)写出,,关于原点对称的点,,,连接即可;
    (2)连接OC,OB,根据旋转的90°可得,,,,,即可;
    【详解】
    (1),,关于原点对称的点,,,作图如下;
    (2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:

    【点睛】
    本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
    6、(1)见解析,4;(2)0,-2,-2,-3,-4,0;(3)或.
    【分析】
    (1)先画出△ABC,然后再利用割补法求△ABC得面积即可;
    (2)先作出,然后结合图形确定所求点的坐标即可;
    (3)先求出PB的长,然后分P在B的左侧和右侧两种情况解答即可.
    【详解】
    解:(1)画出如图所示:
    的面积是:;
    (2)作出如图所示,则(0,-2),( -2,-3),(-4,0)
    故填:0,-2,-2,-3,-4,0;
    (3)∵P为x轴上一点,的面积为4,
    ∴,
    ∴当P在B的右侧时,横坐标为:
    当P在B的左侧时,横坐标为,
    故P点坐标为:或.

    【点睛】
    本题主要考查了轴对称、三角形的平移、三角形的面积以及平面直角坐标系中点的坐标等知识点,根据题意画出图形成为解答本题的关键.
    7、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16
    【分析】
    (1)作B点关于y轴的对称点 连接与y轴的交点即为C点,即可求出点C的坐标;
    (2)根据网格画出△ABC关于y轴对称的△A'B'C'即可;
    (3)根据梯形面积公式即可求四边形AA'B'B的面积.
    【详解】
    解:(1)所要求作△ABC 如图所示,点C的坐标为(0,4);

    (2)△A'B'C'即为所求;
    (3)点A,B,A',B'的坐标分别为:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);
    ∴四边形AA'B'B的面积为:
    = (2+6)×4
    =16.
    【点睛】
    本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称的性质.
    8、(1)见解析;(2)见解析
    【分析】
    (1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
    (2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
    【详解】
    解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,

    理由如下:
    根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
    ∴△ABM≌△BNQ,
    ∴AB=BN,∠ABM=∠BNQ,
    ∴∠BAP=∠BNP,
    ∵∠NBQ+∠BNQ=90°,
    ∴∠ABM +∠BNQ=90°,
    ∴∠ABN=90°,
    ∴∠BAP=∠BNP=45°;
    (2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.

    理由如下:
    过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
    ∴△ACD≌△QBG,
    ∴∠ACD=∠QBG,
    ∵∠QBG+∠BQG=90°,
    ∴∠ACD +∠BQG=90°,
    ∴∠CHQ=90°,
    ∴BH⊥AC,即BH为△ABC的高.
    【点睛】
    本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
    9、(1)画图见解析,;(2)画图见解析,(-2,2)
    【分析】
    (1)根据关于y轴的点的坐标特征分别作出△ABC的各个顶点关于x轴的对称点,然后连线作图即可;
    (2)利用网格特点和旋转的性质画出点A2、B、C2的坐标,然后描点即可得到△A2BC2,然后写出点A2的坐标.
    【详解】
    解:(1)如图,即为所求;
    ∵是A(2,4)关于x轴对称的点,
    ∴根据关于x轴对称的点的坐标特征可知:;

    (2)如图,即为所求,
    ∴的坐标为(-2,2).

    【点睛】
    本题考查轴对称及旋转作图,掌握点的坐标变化规律找准图形对应点正确作图是解题关键.
    10、(1)见解析;(2)见解析,
    【分析】
    (1)根据关于y轴对称点的坐标特点得到△A1B1C1各顶点的坐标,然后描出各点,然后顺次连接即可;
    (2)作点A关于x轴的对称点A1,连接A1B交x轴与点P.
    【详解】
    解:(1)如图△ABC及△A1B1C1即为所求作的图形;

    (2)如图点P即为所求作的点,此时点P的坐标(2,0) .
    【点睛】
    本题主要考查的是轴对称变换,掌握关于轴对称点的坐标特点是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题:

    这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步测试题,共31页。试卷主要包含了如果点P,点P,平面直角坐标系中,将点A,若点P等内容,欢迎下载使用。

    2020-2021学年第十五章 平面直角坐标系综合与测试同步训练题:

    这是一份2020-2021学年第十五章 平面直角坐标系综合与测试同步训练题,共29页。试卷主要包含了在平面直角坐标系中,点P,根据下列表述,能确定位置的是,点M,如果点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题,共31页。试卷主要包含了已知点A,点P,在平面直角坐标系中,点,已知点M等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map