![2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试卷(无超纲带解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712517/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试卷(无超纲带解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712517/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版七年级数学第二学期第十五章平面直角坐标系专项测试试卷(无超纲带解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712517/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试综合训练题
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试综合训练题,共31页。试卷主要包含了已知A,点P关于y轴对称点的坐标是.,如果点P,若平面直角坐标系中的两点A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
2、点A关于y轴的对称点A1坐标是(2,-1),则点A关于轴的对称点A2坐标是( )
A.(-1,-2) B.(-2,1) C.(2,1) D.(2,-1)
3、如图所示,在平面直角坐标系中,点A(0,4),B(2,0),连接AB,点D为AB的中点,将点D绕着点A旋转90°得到点D的坐标为( )
A.(﹣2,1)或(2,﹣1) B.(﹣2,5)或(2,3)
C.(2,5)或(﹣2,3) D.(2,5)或(﹣2,5)
4、已知A(2,5),若B是x轴上的一动点,则A、B两点间的距离的最小值为( )
A.2 B.3 C.3.5 D.5
5、平面直角坐标系中,下列在第二象限的点是( )
A. B. C. D.
6、点P(﹣1,2)关于y轴对称点的坐标是( ).
A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
7、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
8、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=( )
A.﹣1 B.1 C.﹣5 D.5
9、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2 B.-2 C.4 D.-4
10、如果点P(m,n)是第三象限内的点,则点Q(-n,0)在( )
A.x轴正半轴上 B.x轴负半轴上 C.y轴正半轴上 D.y轴负半轴上
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.
2、在平面直角坐标系中,点关于原点的对称点坐标为_______.
3、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
4、如图,边长为1的正六边形放置于平面直角坐标系中,边在轴正半轴上,顶点在轴正半轴上,将正六边形绕坐标原点顺时针旋转,每次旋转,那么经过第2022次旋转后,顶点的坐标为________.
5、已知点到两坐标轴的距离相等,则点E的坐标为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,图中的小方格都 是边长为1的正方形,△ABC的顶点坐标为A、B、C三点.
(1)写出顶点A、B、C三点的坐标;
(2)请在图中画出△ABC关于y轴对称的图形△A′B′C′;
(3)写出点B′和点C′的坐标.
2、如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,1),B(0,1),C(0,4).
(1)画出△ABC关于x轴对称的△A1B1C1,A、B、C的对应点分别为A1,B1,C1;
(2)画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2,A、B、C的对应点分别为A2,B2,C2.连接B2C2,并直接写出线段B2C2的长度.
3、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小正方形的顶点重合.
(1)画出一个面积等于9的等腰直角三角形ABC,使△ABC的三个顶点在坐标轴上,且△ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)
(2)将△ABC向下平移3个单位,再向右平移1个单位得到△A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出△A1B1C1,并直接写出A1C的长.
4、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 .
5、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.
6、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
7、如图,在平面直角坐标系中,已知的三个顶点都在网格的格点上.
(1)在图中作出关于轴对称的,并写出点的对应点的坐标;
(2)在图中作出关于轴对称的,并写出点的对应点的坐标.
8、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).
(1)请在图中画出ABC;
(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;
(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .
9、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系.
(2)请作出△ABC关于y轴对称的△A′B′C′.
(3)求△ABC的面积 .
10、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)求△A1B1C1的面积.
-参考答案-
一、单选题
1、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
2、B
【分析】
由题意由对称性先求出A点坐标,再根据对称性求出点关于轴的对称点坐标.
【详解】
解:由点关于轴的对称点坐标是,可知A为,则点关于轴的对称点坐标是.
故选B.
【点睛】
本题考查对称性,利用点关于轴对称,横轴坐标变为相反数,纵轴坐标不变以及点关于轴对称,纵轴坐标变为相反数,横轴坐标不变进行分析.
3、C
【分析】
分顺时针和逆时针旋转90°两种情况讨论,构造全等三角形即可求解.
【详解】
解:设点D绕着点A逆时针旋转90°得到点D1,
分别过点D,D1作轴的垂线,分别交轴于点C、E,如图:
根据旋转的性质得∠DAD1=90°,AD1=AD,
∴∠AED1=∠ACD=90°,
∴∠D1+∠EAD1=90°,∠EAD1 +∠DAC=90°,
∴∠D1=∠DAC,
∴△AD1E≌△DAC,
∴CD=AE,ED1=AC,
∵A(0,4),B(2,0),点D为AB的中点,
∴点D的坐标为(1,2),
∴CD=AE=1,ED1=AC=AO-OC=2,
∴点D1的坐标为(2,5);
设点D绕着点A顺时针旋转90°得到点D2,
同理,点D2的坐标为(-2,3),
综上,点D绕着点A旋转90°得到点D的坐标为(-2,3)或(2,5),
故选:C.
【点睛】
本题考查了坐标与图形的变化-旋转,全等三角形的判定和性质,根据平面直角坐标系确定出点D1和D2的位置是解题的关键.
4、D
【分析】
当AB⊥x轴时,AB距离最小,最小值即为点A纵坐标的绝对值,据此可得.
【详解】
解:∵A(﹣2,5),且点B是x轴上的一点,
∵当AB⊥x轴时,AB距离最小,即B点(-2,0)
∴A、B两点间的距离的最小值5.
故选:D.
【点睛】
本题考查了直线外一点与直线上各点连接的所有线段中,垂线段最短;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
5、C
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
6、A
【分析】
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
【详解】
解:∵点P(-1,2)关于y轴对称,
∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
故选:A.
【点睛】
本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
7、B
【分析】
根据轴对称的性质判断即可.
【详解】
解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
故选:B.
【点睛】
本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
8、B
【分析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.
【详解】
解:∵点P(﹣2,b)和点Q(a,﹣3),
又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴a=﹣2,b=3.
∴a+b=1,
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.
9、A
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
10、A
【分析】
根据平面直角坐标系中象限的坐标特征可直接进行求解.
【详解】
解:∵点P(m,n)是第三象限内的点,
∴n<0,
∴-n>0,
∴点Q(-n,0)在x轴正半轴上;
故选A.
【点睛】
本题主要考查平面直角坐标系中象限的坐标,熟练掌握在第一象限的点坐标为(+,+);在第二象限的点坐标为(-,+),在第三象限的点坐标为(-,-),在第四象限的点坐标为(+,-)是解题的关键.
二、填空题
1、 (9,6)
【分析】
根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.
【详解】
解:根据题意,如图:
∴有序数对的数是;
由图可知,中含有4个数,中含有9个数,中含有16个数;
……
∴中含有64个数,且奇数行都是从左边第一个数开始,
∵,
∴是第九行的第6个数;
∴数位置为有序数对是(9,6).
故答案为:;(9,6).
【点睛】
此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.
2、(-4,7)
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),进而得出答案.
【详解】
解:点关于原点的对称点坐标为(-4,7),
故答案是:(-4,7).
【点睛】
此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
3、或
【分析】
根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
【详解】
解:∵点,,且ABx轴,
∴y=2,
∵点到轴的距离是到轴距离的2倍,
∴,
∴,
∴B(-4,2)或(4,2).
故答案为(-4,2)或(4,2).
【点睛】
本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
4、
【分析】
连接AD、BD,由勾股定理可得BD,求出∠OFA=30°,得到OA的值,进而求得OB的值,得到点D的坐标,由题意可得6次一个循环,即可求出经过第2022次旋转后,顶点的坐标.
【详解】
解:如图,连接AD,BD,
在正六边形ABCDEF中,,
∴,
在中,,
∴,
∴,
∴,
∴,
∵将正六边形ABCDEF绕坐标原点O顺时针旋转,每次旋转60°,
∴6次一个循环,
∵,
∴经过第2022次旋转后,顶点D的坐标与第一象限中D点的坐标相同,
故答案为:.
【点睛】
此题考查了正六边形的性质,平面直角坐标系中图形规律问题,解题的关键是正确分析出点D坐标的规律.
5、(-7,-7)或()
【分析】
根据点到两坐标轴的距离相等,得到,解方程求出a的值代入计算即可得到答案.
【详解】
解:由题意得,
解得或,
当时,a-3=-7,2a+1=-7,点E的坐标为(-7,-7),
当时,,∴点E的坐标为(),
故答案为:(-7,-7)或().
【点睛】
此题考查直角坐标系中点的坐标特点,正确掌握点到两坐标轴的距离相等,得到是解题的关键.
三、解答题
1、(1)A( 0, -2 ),B( 3 , -1 ),C( 2, 1 );(2)图见解析;(3)(-3,-1 ),(-2,1 )
【分析】
(1)根据三角形在坐标中的位置可得;
(2)分别作出点A、B、C关于y轴的对称点,再顺次连接可得;
(3)利用点的坐标的表示方法求解.
【详解】
解:(1)△ABC的各顶点坐标:A(0,-2)、B(3,-1)、C(2,1);
(2)△A′B′C′如图所示:
(3)(-3,-1 ),(-2,1 ).
【点睛】
本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.
2、(1)作图见解析;(2)作图见解析,
【分析】
(1)关于轴对称,即对应点横坐标不变,纵坐标互为相反数,找出坐标即可;
(2)根据旋转的性质可画出图形,即可找出的坐标,由即可得出答案.
【详解】
(1)
关于轴对称的如图所作,
,,,
,,;
(2)绕原点逆时针方向旋转得到的如图所示,
由旋转的性质得:.
【点睛】
本题考查轴对称与旋转作图,掌握轴对称的性质以及旋转的性质是解题的关键.
3、(1)见解析;(2)画图见解析,A1C的长为4.
【详解】
解:(1)如图,△ABC即为所求.
∵AO=BO=CO=3,且AO⊥BC,
∴∠BAO=∠CAO=45°,△ABC的面积=BCAO=9,
∴∠BAC=90°,且△ABC关于y轴对称;
(2)如图,△A1B1C1即为所求.
如图,A1C的长为4.
【点睛】
本题考查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.
4、(1)①见解析;②见解析;(2)M(2,1)
【分析】
(1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
(3)对应点连线的交点M即为所求.
【详解】
解:(1)①如图,△A1B1C1即为所求;
②如图,△A2B2C2即为所求;
(2)如图,点M即为所求,M(2,1),
故答案为:(2,1).
【点睛】
本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
5、(1)6,30°;(2)见解析,30
【分析】
(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
【详解】
(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
答案:6,30°
(2)如图所示:
∵A(5,30),B(12,120),
∴∠BOX=120°,∠AOX=30°,
∴∠AOB=90°,
∵OA=5,OB=12,
∴△AOB的面积为OA·OB=30.
【点睛】
本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
6、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
【分析】
(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
【详解】
解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
如图所示:即为作出的平面直角坐标系;
(2)根据图形得出出点C(4,7)
∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
∵A(1,3),B (2,1),C(4,7),
∴A1(-1,3),B1(-2,1),C1(-4,7),
在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
顺次连接A1B1, B1C1, C1 A1,
如图所示:△A1B1C1即为所求,
故答案为:(-2,1);
(3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
∵点C的对称点为C1,
∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
∵B(2,1),C1(-4,7),
∴C1G=7-1=6,BG=2-(-4)=6,
∴C1G=BG,
∴△GBC1为等腰直角三角形,
∴∠GBC1=45°,
∵∠OHB=90°,
∴△PHB为等腰直角三角形,
∴yP-1=2-0,
解得yP=3,
∴点P(0,3).
故答案为(0,3).
【点睛】
本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
7、(1)为所求,图形见详解,点B1(-5,-1);(2)为所求,图形见详解,点B2(5,1).
【分析】
(1)根据关于轴对称的,求出A1(-6,-6),B1(-5,-1),C1(-1,-6),然后在平面直角坐标系中描点,顺次连接A1B1, B1C1,C1A1即可;
(2)根据关于轴对称的,求出A2(6,6),点B2(5,1),点C2(1,6),
然后在平面直角坐标系中描点,顺次连接A2B2, B2C2,C2A2即可.
【详解】
解:(1)根据点在平面直角坐标系中的位置,△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
关于轴对称的,
关于x轴对称点的特征是横坐标不变,纵坐标互为相反数,
∴中点A1(-6,-6),点B1(-5,-1),点C1(-1,-6),
在平面直角坐标系中描点A1(-6,-6),B1(-5,-1),C1(-1,-6),
顺次连接A1B1, B1C1,C1A1,
则为所求,点B1(-5,-1);
(2)∵关于轴对称的,
∴点的坐标特征是横坐标互为相反数,纵坐标不变,
∵△ABC三点坐标分别为A(-6,6),B(-5,1),C(-1,6),
∴中点A2(6,6),点B2(5,1),点C2(1,6),
在平面直角坐标系中描点A2(6,6),B2(5,1),C2(1,6),
顺次连接A2B2, B2C2,C2A2,
则为所求,点B2(5,1).
【点睛】
本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.
8、(1)见解析;(2)见解析;(3)(a-5,-b)
【分析】
(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.
(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;
(3)根据点的坐标平移规律可得结论.
【详解】
解:(1)如图,ABC即为所画.
(2)如图,A1B1C1即为所画.
(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b).
故答案为:(a-5,-b)
【点睛】
此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.
9、
(1)见解析;
(2)见解析;
(3)4.
【分析】
(1)根据点坐标直接确定即可;
(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
(3)利用面积加减法计算.
(1)
如图所示:
(2)
解:如图所示:
(3)
解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
故答案为:4.
【点睛】
此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.
10、(1)图形见解析;(2)5
【分析】
(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;
(2)利用割补法求△A1B1C1面积.
【详解】
(1)∵
∴△ABC关于原点O对称的△A1B1C1位置如图:
(2)
【点睛】
此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习题,共24页。试卷主要包含了在平面直角坐标系中,点A,若点P,点P关于y轴对称点的坐标是.等内容,欢迎下载使用。
这是一份2021学年第十五章 平面直角坐标系综合与测试单元测试巩固练习,共31页。试卷主要包含了如图,A,在平面直角坐标系中,点P,在平面直角坐标系中,点,若点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课堂检测,共34页。试卷主要包含了如果点P,根据下列表述,能确定位置的是,若点P等内容,欢迎下载使用。