![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12712492/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12712492/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系同步测评试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12712492/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题
展开
这是一份数学沪教版 (五四制)第十五章 平面直角坐标系综合与测试复习练习题,共30页。试卷主要包含了已知点A象限,已知点A,在平面直角坐标系中,点在,如图,A等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第四次向右跳动5 个单位至点A4(3,2),…,依此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )
A.(﹣2020,1010) B.(﹣1011,1010) C.(1011,1010) D.(2020,1010)
2、直角坐标系中,点A(-3,4)与点B(3,-4)关于( )
A.原点中心对称 B.轴轴对称 C.轴轴对称 D.以上都不对
3、点P(﹣1,2)关于y轴对称点的坐标是( ).
A.(1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
4、已知点A(n,3)在y轴上,则点B(n-1,n+1)在第()象限
A.四 B.三 C.二 D.一
5、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
6、在平面直角坐标系中,点关于轴的对称点的坐标是( )
A. B. C. D.
7、在平面直角坐标系中,点在( )
A.轴正半轴上 B.轴负半轴上
C.轴正半轴上 D.轴负半轴上
8、如图,A、B两点的坐标分别为A(-2,-2)、B(4,-2),则点C的坐标为( )
A.(2,2) B.(0,0) C.(0,2) D.(4,5)
9、已知点A(﹣2,a)和点B(2,﹣3)关于原点对称,则a的值为( )
A.2 B.﹣2 C.3 D.﹣3
10、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是( )
A.(2,﹣3) B.(3,﹣2) C.(﹣2,﹣3) D.(2,3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若点P(m﹣1,5)与点Q(﹣3,n)关于原点成中心对称,则m﹣n的值是___.
2、如图所示,公园的位置是_______,车站的位置是_______,学校的位置是_______.
3、已知点在第二象限,且离轴的距离为3,则____.
4、在平面直角坐标系内,点A(a,﹣3)与点B(1,b)关于原点对称,则a+b的值_________.
5、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,△ABC顶点的坐标分别为A(1,﹣1),B(4,﹣1),C(3,﹣4).将△ABC绕点A逆时针旋转90°后,得到△AB1C1.在所给的直角坐标系中画出旋转后的△AB1C1,并直接写出点B1、C1的坐标:B1( , );C1( , ).
2、如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).
(1)作出△ABC关于y轴的对称图形△A'B'C';
(2)写出点A',B',C'的坐标;
(3)在y轴上找一点P,使PA+PC的长最短.
3、如图,在平面直角坐标系中,直角的三个顶点分别是,,.
(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;
(2)分别连结,后,求四边形的面积.
4、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).
(1)直接写出点B关于原点对称的点B′的坐标: ;
(2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
5、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的伴随图形.
例如:点P(2,1)的伴随图形是点P'(-2,-1).
(1)点Q(-3,-2)的伴随图形点Q'的坐标为 ;
(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).
①当t=-1,且直线m与y轴平行时,点A的伴随图形点A'的坐标为 ;
②当直线m经过原点时,若△ABC的伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.
6、如图,在平面直角坐标系中,AO=CO=6,AC交y轴于点B,∠BAO=30°,CO的垂直平分线过点B交x轴于点E.
(1)求AE的长;
(2)动点N从E出发,以1个单位/秒的速度沿射线EC方向运动,过N作x轴的平行线交直线OC于G,交直线BE于P,设GP的长为d,运动时间为t秒,请用含量t的式子表示d,并直接写出t的取值范围;
(3)在(2)的条件下,动点M从A以1个单位/秒的速度沿射线AE运动,且点M与点N同时出发,MN与射线OC相交于点K,是否存在某一运动时间t,使得=2,若存在,请求出t值;若不存在,请说明理由.
7、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).
(1)如图1,在BC上找一点P,使∠BAP=45°;
(2)如图2,作△ABC的高BH.
8、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:
(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.
(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.
9、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
10、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
(1)图中与∠ABC相等的角是 ;
(2)若AC=3,BC=4,AB=5,求点C的坐标.
-参考答案-
一、单选题
1、C
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
【详解】
解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
∴第2n次跳动至点的坐标是(n+1,n),
∴第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010).
故选C.
【点睛】
本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
2、A
【分析】
观察点A与点B的坐标,依据关于原点中心对称的点,横坐标与纵坐标都互为相反数可得答案.
【详解】
根据题意,易得点(-3,4)与(3,-4)的横、纵坐标互为相反数,则这两点关于原点中心对称.
故选A.
【点睛】
本题考查在平面直角坐标系中,关于原点中心对称的两点的坐标之间的关系.掌握关于原点对称的点,横坐标与纵坐标都互为相反数是解答本题的关键.
3、A
【分析】
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.
【详解】
解:∵点P(-1,2)关于y轴对称,
∴点P(-1,2)关于y轴对称的点的坐标是(1,2).
故选:A.
【点睛】
本题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.
4、C
【分析】
直接利用y轴上点的坐标特点得出n的值,进而得出答案.
【详解】
解:∵点A(n,3)在y轴上,
∴n=0,
则点B(n-1,n+1)为:(-1,1),在第二象限.
故选:C.
【点睛】
本题主要考查了点的坐标,正确得出n的值是解题关键.
5、A
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
6、B
【分析】
根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
解:点P(2,-1)关于x轴的对称点的坐标为(2,1),
故选:B.
【点睛】
此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.
7、B
【分析】
依据坐标轴上的点的坐标特征即可求解.
【详解】
解:∵点(,),纵坐标为
∴点(,)在x轴负半轴上
故选:B
【点睛】
本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为,y轴上点的横坐标为.
8、B
【分析】
根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.
【详解】
解:∵A点坐标为(-2,-2),B点坐标为(4,-2),
∴可以建立如下图所示平面直角坐标系,
∴点C的坐标为(0,0),
故选B.
【点睛】
本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.
9、C
【分析】
根据两个点关于原点对称时,它们横、纵坐标均互为相反数,即可求出a的值.
【详解】
解:∵点A(﹣2,a)和点B(2,﹣3)关于原点对称,
∴a=3,
故选:C.
【点睛】
此题考查的是关于原点对称的两点坐标关系,掌握关于原点对称的两点坐标关系:横、纵坐标均互为相反数是解决此题的关键.
10、B
【分析】
根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(﹣x,﹣y),进而得出答案.
【详解】
解答:解:点P(﹣3,2)关于原点对称的点的坐标是:(3,﹣2).
故选:B.
【点睛】
此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.
二、填空题
1、9
【分析】
根据关于原点对称点的坐标特征求出、的值,再代入计算即可.
【详解】
解:点与点关于原点成中心对称,
,,
即,,
,
故答案为:9.
【点睛】
本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数.
2、 (4,4); (-2,-3); (4,-2)
【分析】
用点坐标表示位置.
【详解】
①在直角坐标系中查横坐标为,纵坐标为;得到公园的位置为
故答案为:.
②在直角坐标系中查横坐标为,纵坐标为;得到车站的位置为
故答案为:.
③在直角坐标系中查横坐标为,纵坐标为;得到学校的位置为
故答案为:.
【点睛】
本题考察了坐标系中点的坐标.解题的关键在于正确的找出横、纵坐标的值.
3、8
【分析】
根据题意可得,求出的值,代入计算即可.
【详解】
解:点在第二象限,且离轴的距离为3,
,
解得,
.
故答案为:8.
【点睛】
本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出的值是解本题的关键.
4、2
【分析】
根据点关于原点对称的坐标特点即可完成.
【详解】
∵点A(a,﹣3)与点B(1,b)关于原点对称
∴
∴
故答案为:2
【点睛】
本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.
5、(2021,0)
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
三、解答题
1、画图见解析;B1(1,2);C1(4,1).
【分析】
图形绕点A逆时针旋转90°,将AB,AC逆时针旋转90°,得到,连接, 利用网格特点和旋转的性质得出点B1、C1的坐标,从而得到△AB1C1.
【详解】
如图所示,△AB1C1为所作,B1点的坐标为(1,2),C1点的坐标为(4,1).
故答案为(1,2),(4,1).
【点睛】
本题考察了绕某点画旋转图形以及求点坐标,首先找到旋转的点,根据旋转角度和网格特征,即可得到对应坐标点.
2、(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析
【分析】
(1)分别作出点A、B、C关于y轴的对称点,再收尾顺次连接即可得;
(2)根据△A'B'C'各顶点的位置,写出其坐标即可;
(3)连接PC,则PC=PC′,根据两点之间线段最短,可得PA+PC的值最小.
【详解】
解:(1)如图所示,△A′B′C′为所求作;
(2)由图可得,A′(1,5),B′(1,0),C′(4,3);
(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.
【点睛】
本题主要考查了利用轴对称变换作图以及最短距离的问题,解题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,运用轴对称变换来解决,多数情况要作点关于某直线的对称点.关于y轴对称的点,纵坐标相同,横坐标互为相反数.
3、(1)图见解析,,,;(2)9
【分析】
利用网格特点和旋转的性质画出、、的对应点、、,从而得到;
利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.
【详解】
解:如图,为所作,各个顶点坐标为,,;
如图,四边形的面积.
【点睛】
本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.
4、(1)(4,﹣1);(2)见解析;(3)见解析.
【分析】
(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
【详解】
(1)点B关于原点对称的点B′的坐标为(4,﹣1),
故答案为:(4,﹣1);
(2)如图所示,△A1B1C1即为所求.
(3)如图所示,△A2B2C2即为所求.
【点睛】
本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
5、
(1)(3,2)
(2)①(3,-1);②-1<t<1或2<t<4
【分析】
(1)点先关于轴对称的点坐标为,再关于轴对称的点坐标为,故可得点的伴随图形点坐标;
(2)①时,点坐标为,直线为,此时点先关于轴对称的点坐标为,再关于轴对称的点坐标为,进而得到点的伴随图形点坐标;②由题意知直线为直线,、、三点的轴,的伴随图形点坐标依次表示为:,,,由题意可得,或解出的取值范围即可.
(1)
解:由题意知沿轴翻折得点坐标为;
沿轴翻折得点坐标为
故答案为:.
(2)
①解:.,点坐标为,直线为,
沿轴翻折得点坐标为
沿直线翻折得点坐标为即为
故答案为:
②解:∵直线经过原点
∴直线为
∴、、的伴随图形点坐标先沿轴翻折,点坐标依次为,,;
然后沿直线翻折,点坐标依次表示为:,,
由题意可知:或
解得:或
【点睛】
本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.
6、(1)12;(2);(3)当或时,使得.
【分析】
(1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;
(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;
(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.
【详解】
解:(1)∵OA=OC=6,∠BAO=30°,
∴∠OAC=∠OCA=30°,
∴∠COE=∠OAC+∠OCA=60°,
∵BE是线段OC的垂直平分线平分线,
∴OE=CE,
∴△COE是等边三角形,
∴OE=OC=AO=6,
∴AE=AO+OE=12;
(2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),
∵BE是线段OC的垂直平分线,
∴∠CEP=∠OEP,
∵PN∥OE,
∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,
∴∠NPE=∠NEP,△CGN是等边三角形,
∴NP=NE=t,NG=CN=CE-NE=6-t,
∴PG=d=NG-NP=6-t-t=6-2t,
∵当直线PN刚好经过H点时,此时CH=CN=3,
即当t=3时,直线PN经过H点,
∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);
如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),
同理可证NP=NE=t,NG=CN=CE-CN=6-t,
∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);
如图3所示,当直线PN在C点上方时
同理可证NP=NE=t,NG=CN=EN-CE=t-6,
∴PG=d=NP+NG=t+t-6=2t-6(t>6),
∴综上所述, ;
(3)如图3-1所示,当N在CE上时,过点N作NR∥x轴交OC于R,
同(2)可证△CRN是等边三角形,
∴RN=CN=CR,
∵M、N运动的速度相同,
∴AM=NE,
又∵AO=EC,
∴MO=NR,
∵NR∥MO,
∴∠RNK=∠OMK,∠NRK=∠MOK,
∴△MOK≌△NRK(ASA),
∴OK=RK,OM=RN,
∵,
∴,
∵,
∴,即,
解得;
如图3-2所示,当C在EC的延长线上时,
同理可证,,
∵,
解得,
∴综上所述,当或时,使得.
【点睛】
本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解.
7、(1)见解析;(2)见解析
【分析】
(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
【详解】
解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,
理由如下:
根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
∴△ABM≌△BNQ,
∴AB=BN,∠ABM=∠BNQ,
∴∠BAP=∠BNP,
∵∠NBQ+∠BNQ=90°,
∴∠ABM +∠BNQ=90°,
∴∠ABN=90°,
∴∠BAP=∠BNP=45°;
(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.
理由如下:
过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
∴△ACD≌△QBG,
∴∠ACD=∠QBG,
∵∠QBG+∠BQG=90°,
∴∠ACD +∠BQG=90°,
∴∠CHQ=90°,
∴BH⊥AC,即BH为△ABC的高.
【点睛】
本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
8、(1)6,30°;(2)见解析,30
【分析】
(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.
【详解】
(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.
答案:6,30°
(2)如图所示:
∵A(5,30),B(12,120),
∴∠BOX=120°,∠AOX=30°,
∴∠AOB=90°,
∵OA=5,OB=12,
∴△AOB的面积为OA·OB=30.
【点睛】
本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.
9、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
10、(1)∠ACO;(2)点C的坐标为(0,).
【分析】
(1)由同角的余角相等,可得到∠ABC=∠ACO;
(2)利用面积法可求得CO的长,进而得到点C的坐标.
【详解】
解:(1)∵OC⊥AB,∠ACB=90°.
∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
∴∠ABC=∠ACO;
故答案为:∠ACO;
(2)∵AC=3,BC=4,AB=5,
∴三角形ABC是直角三角形,∠ACB=90°
ABCO=ACBC,即CO==,
∴点C的坐标为(0,).
【点睛】
本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
相关试卷
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了点A的坐标为,则点A在,在平面直角坐标系中,点P,点P在第二象限内,P点到x,已知点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习,共32页。试卷主要包含了点A个单位长度.,在平面直角坐标系中,点P,根据下列表述,能确定位置的是,直角坐标系中,点A与点B关于等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共26页。试卷主要包含了如图,A,点关于轴对称的点的坐标是,若点P,已知点P,点P等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)