![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节练习练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12712444/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节练习练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12712444/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十五章平面直角坐标系章节练习练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12712444/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练
展开
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试一课一练,共27页。试卷主要包含了点P关于原点O的对称点的坐标是,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )A.第四象限 B.第三象限 C.第二象限 D.第一象限2、在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2 B.m=,n=2 C.m=2,n=3 D.m=,n=3、根据下列表述,能确定位置的是( )A.光明剧院8排 B.毕节市麻园路C.北偏东40° D.东经116.16°,北纬36.39°4、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)5、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )A.(-1,6) B.(-1,2) C.(-1,1) D.(4,1)6、点P(3,﹣2)关于原点O的对称点的坐标是( )A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)7、若点在第一象限,则a的取值范围是( )A. B. C. D.无解8、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)9、如图,每个小正方形的边长为1,在阴影区域的点是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)10、点A的坐标为,则点A在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将自然数按图规律排列:如果一个数在第m行第n列,那么记它的位置为有序数对,例如:数2在第2行第1列,记它的位置为有序数对.按照这种方式,(1)位置为有序数对的数是______;(2)数位置为有序数对______.2、已知点与关于原点对称,则xy的值是______.3、(1)把点P(2,-3)向右平移2个单位长度到达点,则点的坐标是_______.(2)把点A(-2,-3)向下平移3个单位长度到达点B,则点B的坐标是_______.(3)把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,则点的坐标是_______.4、已知点A(1,3)和B(1,-3),则点A,B关于________对称.5、已知点A(a,1)与点B(3,b)关于x轴对称,则a+b=_______.三、解答题(10小题,每小题5分,共计50分)1、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4).(1)画出线段AB关于y轴对称的线段A1B1,再画出线段A1B1关于x轴对称的线段A2B2;(2)点A2的坐标为 ;(3)若此平面直角坐标系中有一点M(a,b),点M关于y轴对称的对称点M1,点M1关于x轴对称的对称点M2,则点M2的坐标为 .2、如图,在平面直角坐标系中,已知的三个顶点的坐标分别为、、.(1)画出将关于点对称的图形;(2)写出点、、的坐标.3、如图,在平面直角坐标系中,已知点A(1,4),B(4,4),C(2,1).(1)请在图中画出ABC;(2)将ABC向左平移5个单位,再沿x轴翻折得到A1B1C1,请在图中画出A1B1C1;(3)若ABC 内有一点P(a,b),则点P经上述平移、翻折后得到的点P1的坐是 .4、如图,三角形的项点坐标分别为,,.(1)画出三角形关于点的中心对称的,并写出点的坐标;(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.5、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.6、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)求△ABC的面积7、如图,在平面直角坐标系中,的三个顶点均在格点上.(1)在网格中作出关于轴对称的图形;(2)直接写出以下各点的坐标:________,________,________;(3)网格的单位长度为1.则________.8、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;(2)求的面积.9、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.10、如图,在平面直角坐标系中,直角的三个顶点分别是,,.(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积. -参考答案-一、单选题1、A【分析】直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.【详解】∵点P(m,1)在第二象限内,∴m<0,∴1﹣m>0,则点Q(1﹣m,﹣1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、B【分析】由题意直接根据关于y轴对称点的性质求出m和n的值,从而得解.【详解】解:∵点A(m,2)与点B(3,n)关于y轴对称,纵坐标相同,横坐标互为相反数.∴m=-3,n=2.故答案为:B.【点睛】本题主要考查关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题的关键.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:.光明剧院8排,没有明确具体位置,故此选项不合题意;.毕节市麻园路,不能确定位置,故此选项不合题意;.北偏东,没有明确具体位置,故此选项不合题意;.东经,北纬,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.4、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.5、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵,,∴得到的点的坐标是.故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.6、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.7、B【分析】由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.【详解】解: 点在第一象限, 由①得: 由②得: 故选B【点睛】本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.8、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.9、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.故选:C.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.10、A【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:由题意,∵点A的坐标为,∴点A在第一象限;故选:A【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、 (9,6) 【分析】根据题意,找出题目的规律,中含有4个数,中含有9个数,中含有16个数,……,中含有64个数,且奇数行都是从左边第一个数开始,然后根据这个规律即可得出答案.【详解】解:根据题意,如图:∴有序数对的数是;由图可知,中含有4个数,中含有9个数,中含有16个数;……∴中含有64个数,且奇数行都是从左边第一个数开始,∵,∴是第九行的第6个数;∴数位置为有序数对是(9,6).故答案为:;(9,6).【点睛】此题考查数字的变化规律,找出数字之间的联系,得出运算规律,解决问题.2、【分析】直接利用关于原点对称点的性质得出x,y的值进而得出答案.【详解】解:∵点与关于原点对称,∴ 解得:,则xy的值是:-3.故答案为:-3.【点睛】此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.3、 (4,-3) (-2,-6) (-2,7) 【分析】(1)根据点向右平移2个单位即横坐标加2,纵坐标不变求解即可;(2)根据点向下平移3个单位即横坐标不变,纵坐标减3求解即可;(3)根据点向左平移4个单位长度,再向上平移4个单位即横坐标减4,纵坐标加4求解即可.【详解】解:(1)∵把点P(2,-3)向右平移2个单位长度到达点,∴横坐标加2,纵坐标不变,∴点的坐标是(4,-3);(2)∵把点A(-2,-3)向下平移3个单位长度到达点B,∴横坐标不变,纵坐标减3,∴点B的坐标是(-2,-6);(3)∵把点P(2,3)向左平移4个单位长度,再向上平移4个单位长度到达点,∴横坐标减4,纵坐标加4,∴点的坐标是(-2,7).故答案为:(4,-3);(-2,-6);(-2,7).【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律.向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小.4、x轴【分析】根据点坐标关于轴对称的变换规律即可得.【详解】解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数.点A(1,3)和B(1,-3),的横坐标相同,纵坐标互为相反数,点关于轴对称,故答案为:轴.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.5、2【分析】根据两点关于x轴对称得到a=3,b=-1,代入计算即可.【详解】解:∵点A(a,1)与点B(3,b)关于x轴对称,∴a=3,b=-1,∴a+b=2.故答案为:2.【点睛】此题考查了轴对称的性质—关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键.三、解答题1、(1)见详解;(2)(1,2);(3)(-a,-b).【分析】(1)分别作出A、B二点关于y轴的对称点A1、B1,再分别作出A1、B1二点关于x轴的对称点A2、B2即可;(2)根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可.【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2) 点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.2、(1)见解析;(2),,.【分析】(1)直接利用关于点O对称的性质得出对应点位置,顺次连接各个对应点,即可;(2)根据对应点位置直接写出坐标,即可.【详解】解:(1)如图所示,(2),,.【点睛】本题考查了利用中心对称变换在坐标系中作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.3、(1)见解析;(2)见解析;(3)(a-5,-b)【分析】(1)结合直角坐标系,可找到三点的位置,顺次连接即可得出△ABC.(2)将各点分别向左平移5个单位长度,再作出关于x轴的对称点,顺次连接即可得到A1B1C1;(3)根据点的坐标平移规律可得结论.【详解】解:(1)如图,ABC即为所画.(2)如图,A1B1C1即为所画.(3)点P(a,b)向左平移5个单位后的坐标为(a-5,b),关于x轴对称手点的坐标为(a-5,-b). 故答案为:(a-5,-b)【点睛】此题考查了平移作图、轴对称变换以及直角坐标系的知识,解答本题的关键是掌握平移和轴对称的特点,找到各点在直角坐标系的位置.4、(1)图见解析,;(2)图见解析,【分析】(1)写出,,关于原点对称的点,,,连接即可;(2)连接OC,OB,根据旋转的90°可得,,,,,即可;【详解】(1),,关于原点对称的点,,,作图如下;(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:【点睛】本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.5、B(2,1),D(﹣2,﹣1).【分析】根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.【详解】解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),∴点B、D的纵坐标分别是1,﹣1,∵AB=CD=3,∴点B、D的横坐标分别是-1+3=2,1-3=-2,∴B(2,1),D(﹣2,﹣1).【点睛】本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.6、(1)见解析;(2)11.5【分析】(1)直接利用关于x轴对称点的性质,进而得出答案;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示(2)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.7、(1)见解析;(2);; ;(3)5【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)根据点的位置写出坐标即可;(3)把三角形的面积看成矩形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)A1(3,4),B1(5,2),C1(2,0).故答案为:(3,4),(5,2),(2,0);(3)网格的单位长度为1,则=3×4-×2×3-×2×2-×1×4=5,故答案为:5.【点睛】本题考查轴对称,三角形的面积等知识,解题的关键是掌握轴对称的性质,学会利用分割法求三角形面积.8、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)【分析】(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.【详解】解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);∴如图所示,即为所求;(2)由图可知 .【点睛】本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.9、(1)见解析;(2)A2(-2,0),B2(-1,3),C2(1,2),(3)P(m-3,-n)【分析】(1)直接利用关于轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点的坐标.【详解】解:(1)如图所示:△就是所要求作的图形;(2)如图所示:△就是所要求作的图形,其顶点坐标为A2(-2,0),B2(-1,3),C2(1,2);(3)如果上有一点经过上述两次变换,那么对应上的点的坐标是:.故答案为:.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.10、(1)图见解析,,,;(2)9【分析】利用网格特点和旋转的性质画出、、的对应点、、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积.【详解】解:如图,为所作,各个顶点坐标为,,;如图,四边形的面积.【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共30页。试卷主要包含了若点P,点P,点在第四象限,则点在第几象限,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共27页。试卷主要包含了如果点P,在平面直角坐标系中,点P等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步达标检测题,共29页。试卷主要包含了已知A,在平面直角坐标系xOy中,点A,已知点A象限等内容,欢迎下载使用。