沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试复习练习题
展开七年级数学第二学期第十五章平面直角坐标系专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系中,点A(0,3),B(2,1),经过点A的直线l∥x轴,C是直线l上的一个动点,当线段BC的长度最短时,点C的坐标为( )
A.(0,1) B.(2,0) C.(2,﹣1) D.(2,3)
2、点M(3,2)关于y轴的对称点的坐标为( )
A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)
3、在平面直角坐标系中,点P(-2,3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、在平面直角坐标系中,点P(﹣2,﹣3)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )
A. B. C. D.
6、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是( )
A.﹣1 B.0 C.1 D.2
7、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )
A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
8、点P(﹣2,b)与点Q(a,3)关于x轴对称,则a+b的值为( )
A.5 B.﹣5 C.1 D.﹣1
9、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
10、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点关于x轴对称的点的坐标为________.
2、在平面直角坐标系中,将点P(3,﹣1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _____.
3、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.
4、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
5、在平面直角坐标系中,点P(2,3)向右平移3个单位再向下平移2个单位后的坐标是___.
三、解答题(10小题,每小题5分,共计50分)
1、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.
(1)点的坐标是______;
(2)画出关于轴对称的,其中点、、的对应点分别为点、、;
(3)直接写出的面积为______.
2、如图,三角形的项点坐标分别为,,.
(1)画出三角形关于点的中心对称的,并写出点的坐标;
(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
3、如图,在平面直角坐标中,、、.
(1)在图中作出关于轴的对称图形;
(2)直接写出点、、的坐标:________,________,________.
(3)求的面积.
4、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:
(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;
(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;
(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由.
5、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
(1)根据要求在网格中画出相应图形;
(2)写出△A′B′C′三个顶点的坐标.
6、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系.
(2)请作出△ABC关于y轴对称的△A′B′C′.
(3)求△ABC的面积 .
7、如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
(1)画出△ABC关于直线MN对称的.
(2)若B为坐标原点,请写出、、的坐标,并直接写出的长度..
(3)如图2,A,C是直线同侧固定的点,D是直线MN上的一个动点,在直线MN上画出点D,使最小.(保留作图痕迹)
8、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)
(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;
(2)求的面积.
9、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
10、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;
归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.
-参考答案-
一、单选题
1、D
【分析】
根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.
【详解】
解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,
∴点C的纵坐标是3,
根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,
∵B(2,1),
∴点C的横坐标是2,
∴点C坐标为(2,3),
故选:D.
【点睛】
本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.
2、A
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点(3,2)关于y轴的对称点的坐标是(-3,2).
故选:A.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
3、B
【分析】
根据点横纵坐标的正负分析得到答案.
【详解】
解:点P(-2,3)在第二象限,
故选:B.
【点睛】
此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
4、C
【分析】
根据第三象限内点的坐标横纵坐标都为负的直接可以判断
【详解】
解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
故选C
【点睛】
本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
5、A
【分析】
根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案.
【详解】
解:∵点P(,)和点Q(,)关于轴对称,
∴,
∴.
故选:A.
【点睛】
本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.
6、C
【分析】
由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.
【详解】
∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),
∴平移方法为向右平移2个单位,
∴x=﹣2,y=3,
∴x+y=1,
故选:C.
【点睛】
本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.
7、B
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
解:∵点P(m+3,2m+4)在x轴上,
∴2m+4=0,
解得:m=-2,
∴m+3=-2+3=1,
∴点P的坐标为(1,0).
故选:B.
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
8、B
【分析】
根据关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数,即可求得a与b的值,从而求得a+b的值.
【详解】
∵点P(﹣2,b)与点Q(a,3)关于x轴对称
∴a=−2,b=−3
∴a+b=−2+(−3)=−5
故选:B
【点睛】
本题考查了关于x轴对称的两点的坐标特征,掌握这个特征是关键.
9、B
【分析】
根据轴对称的性质判断即可.
【详解】
解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
故选:B.
【点睛】
本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
10、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
二、填空题
1、 (-2,-5)
【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为:.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
2、
【分析】
根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.
【详解】
将点向上平移5个单位长度得到点,
点M关于原点对称的点的坐标是,
故答案为:.
【点睛】
本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.
3、(,3),3)
【分析】
过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即OB×AB=5.5,可解AB,则A点坐标可求.
【详解】
解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,
则AC=OB,AB=OC.
∵正方形的边长为1,
∴OB=3.
∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,
∴两边的面积分别为3.5.
∴△AOB面积为3.5+2=5.5,即OB×AB=5.5,
×3×AB=5.5,解得AB=.
所以点A坐标为(,3).
故答案为:(,3).
【点睛】
本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.
4、5
【分析】
关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
【详解】
解: 点与,关于y轴对称,
故答案为:5
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
5、 (5,1)
【分析】
利用坐标点平移的性质:左右平移,对横坐标进行加减,上下平移对纵坐标进行加减,解决该题即可.
【详解】
解:点P(2,3)向右平移3个单位再向下平移2个单位,即横坐标加3,纵坐标减2,
所以平移后的点坐标为(5,1).
故答案为:(5,1).
【点睛】
本题主要是考查了点坐标的平移,熟练掌握点坐标的上下左右平移与横纵坐标的关系,是求解该类问题的关键.
三、解答题
1、(1);(2)见解析;(3)12
【分析】
(1)根据平面直角坐标系写出点的坐标即可;
(2)找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)根据正方形的面积减去三个三角形的面积即可求得的面积
【详解】
(1)根据平面直角坐标系可得的坐标为,
故答案为:
(2)如图所示,找到点关于轴对称的对应点,顺次连接,则即为所求;
(3)的面积为
故答案为:
【点睛】
本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.
2、(1)图见解析,;(2)图见解析,
【分析】
(1)写出,,关于原点对称的点,,,连接即可;
(2)连接OC,OB,根据旋转的90°可得,,,,,即可;
【详解】
(1),,关于原点对称的点,,,作图如下;
(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:
【点睛】
本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
3、(1)见解析;(2),,;(3)
【分析】
(1)根据轴对称图形的特点画出图形即可;
(2)根据所画出的图形写出点的坐标;
(3)首先把三角形放在一个大正方形内,再用大正方形的面积减去四周三角形的面积即可.
【详解】
解:(1)如图所示:
(2)根据平面直角坐标系可得:,,;
故答案为:,,
(3)△ABC的面积=3×5-×3×3-×2×1-×5×2=.
【点睛】
本题主要考查了轴对称图形,以及点的坐标,三角形的面积,关键是掌握在计算不规则图形的面积时,可以利用可以用补图的方法.
4、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1即可;
(2)分别作出A,B,C的对应点A2,B2,C2即可;
(3)根据轴对称的定义判断即可.
【详解】
解:(1)如图,△A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);
(2)如图,△A2B2C2即为所求,点A2的坐标(4,3);
(3)△A1B1C1与△A2B2C2关于y轴成轴对称,对称轴为y轴.
【点睛】
本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
5、(1)见解析;(2),,
【分析】
(1)利用平移变换的性质分别作出,,的对应点,,即可.
(2)根据平面直角坐标系写出,,的坐标.
【详解】
解:(1)如图,△即为所求,
(2)根据平面直角坐标系可得:,,.
【点睛】
本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
6、
(1)见解析;
(2)见解析;
(3)4.
【分析】
(1)根据点坐标直接确定即可;
(2)根据轴对称的性质得到点A′、B′、C′,顺次连线即可得到△A′B′C′;
(3)利用面积加减法计算.
(1)
如图所示:
(2)
解:如图所示:
(3)
解:△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4,
故答案为:4.
【点睛】
此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键.
7、(1)画图见解析;(2),;(3)画图见解析
【分析】
(1)分别确定关于对称的对称点 再顺次连接从而可得答案;
(2)根据在坐标系内的位置直接写其坐标与的长度即可;
(3)先确定关于的对称点,再连接 交于 则 从而可得答案.
【详解】
解:(1)如图1,是所求作的三角形,
(2)如图1,为坐标原点,
则
(3)如图2,点即为所求作的点.
【点睛】
本题考查的是画轴对称图形,建立坐标系,用根据点的位置确定点的坐标,轴对称的性质,掌握“利用轴对称的性质得到两条线段和取最小值时点的位置”是解本题的关键.
8、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)
【分析】
(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;
(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.
【详解】
解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),
∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);
∴如图所示,即为所求;
(2)由图可知 .
【点睛】
本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.
9、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
10、(1)(3,5),(5,﹣2);(2)(b,a);(3)Q(-3,-3)
【分析】
(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B′、C′,写出坐标即可.
(2)通过观察即可得出对称结论.
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,此时QE+QD的值最小.
【详解】
解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.
B′(3,5),C′(5,﹣2).
故答案为B′(3,5),C′(5,﹣2).
(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为P′(b,a).
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,
∵两点之间线段最短
∴此时QE+QD的值最小,
由图象可知Q点坐标为(-3,-3).
【点睛】
本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试练习,共32页。试卷主要包含了点A个单位长度.,在平面直角坐标系中,点P,根据下列表述,能确定位置的是,直角坐标系中,点A与点B关于等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共26页。试卷主要包含了平面直角坐标系中,将点A,根据下列表述,能确定位置的是,点A的坐标为,则点A在,已知点A,在平面直角坐标系中,点等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共25页。试卷主要包含了下列各点,在第一象限的是,点关于轴对称的点的坐标是等内容,欢迎下载使用。