


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试单元测试同步测试题
展开这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试单元测试同步测试题,共29页。试卷主要包含了若点在第三象限,则点在.,在平面直角坐标系中,点,若点P等内容,欢迎下载使用。
七年级数学第二学期第十五章平面直角坐标系单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)
3、如图,在坐标系中用手盖住一点,若点到轴的距离为2,到轴的距离为6,则点的坐标是( )
A. B. C. D.
4、若点在第三象限,则点在( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、如图,的顶点坐标为,,,若将绕点按顺时针方向旋转90°,再向左平移2个单位长度,得到,则点的对应点的坐标是( ).
A. B. C. D.
6、根据下列表述,能够确定具体位置的是( )
A.北偏东25°方向 B.距学校800米处
C.温州大剧院音乐厅8排 D.东经20°北纬30°
7、若点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为( )
A.(1,-2) B.(2,1) C.(-2,1) D.(2,-1)
8、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )
A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)
9、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
10、已知点关于x轴的对称点与点关于y轴的对称点重合,则( )
A.5 B.1 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.
2、有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3)(7,3)(4,1)(4,4)请你把这个英文单词写出来或者翻译中文为______.
3、已知点M坐标为,点M到x轴距离为______.
4、如果点P(m+3,2m﹣4)在y轴上,那么m的值是 _____.
5、若点与点关于原点对称,则_________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4).
(1)画出ABC关于原点O对称的,直接写出点的坐标;
(2)画出ABC绕点O逆时针旋转90°后的,并写出点的坐标.
2、如图所示的方格纸中每个小方格都是边长为1个单位的正方形,建立如图所示的平面直角坐标系.
(1)请写出△ABC各点的坐标A B C ;
(2)若把△ABC向上平移2个单位,再向右平移2个单位得,在图中画出,
(3)求△ABC 的面积
3、如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请写出对称中心M点的坐标 .
4、如图,ABCDx轴,且AB=CD=3,A点坐标为(-1,1),C点坐标为(1,-1),请写出点B,点D的坐标.
5、在平面直角坐标系xoy中,A,B,C如图所示:请用无刻度直尺作图(仅保留作图痕迹,无需证明).
(1)如图1,在BC上找一点P,使∠BAP=45°;
(2)如图2,作△ABC的高BH.
6、如图,在直角坐标系中,点A(3,3),B(4,0),C(0,2).
(1)画出△ABC关于原点O对称的△A1B1C1.
(2)求△A1B1C1的面积.
7、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
(3)连接CE,CF,请直接写出△CEF的面积.
8、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;
(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.
9、如图,三角形的项点坐标分别为,,.
(1)画出三角形关于点的中心对称的,并写出点的坐标;
(2)画出三角形绕点顺时针旋转90°后的,并写出点的坐标.
10、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.
(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1 ,3),点B坐标为(2 ,1);
(2)请画出△ABC关于y轴对称的图形△A1B1C1,并写出点B1的坐标为 ;
(3)P为y轴上一点,当PB+PC的值最小时,P点的坐标为 .
-参考答案-
一、单选题
1、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、C
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.
【详解】
解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,
∴点P的横坐标是-3,纵坐标是4,
∴点P的坐标为(-3,4).
故选C.
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.
3、C
【分析】
首先根据P点在第四象限,可以确定P点横纵坐标的符号,再由P到坐标轴的距离即可确定P点坐标.
【详解】
解:∵P点在第四象限,
∴P点横坐标大于0,纵坐标小于0,
∵P点到x轴的距离为2,到y轴的距离为6,
∴P点的坐标为(6,-2),
故选C.
【点睛】
本题主要考查了点所在的象限的坐标特征,点到坐标轴的距离,解题的关键在于能够熟练掌握第四象限点的坐标特征.
4、A
【分析】
根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
【详解】
∵点P(m,n)在第三象限,
∴m<0,n<0,
∴-m>0,-n>0,
∴点在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、A
【分析】
画出旋转平移后的图形即可解决问题.
【详解】
解:旋转,平移后的图形如图所示,,
故选:A
【点睛】
本题考查坐标与图形变化−旋转,解题的关键是理解题意,学会利用图象法解决问题.
6、D
【分析】
根据确定位置的方法即可判断答案.
【详解】
A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
故选:D.
【点睛】
本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
7、D
【分析】
先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.
【详解】
解:点在第四象限,
点的横坐标为正数,纵坐标为负数,
点到轴的距离为1,到轴的距离为2,
点的纵坐标为,横坐标为2,
即,
故选:D.
【点睛】
本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.
8、A
【分析】
由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.
【详解】
解:∵两个点关于原点对称时,它们的坐标符号相反,
∴点关于原点对称的点的坐标是.
故选:A.
【点睛】
题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.
9、A
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、D
【分析】
点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),根据(a,-2)与点(-3,b)是同一个点,得到横坐标相同,纵坐标相同,计算a,b计算即可.
【详解】
∵点关于x轴的对称点(a,-2),点关于y轴的对称点(-3,b),(a,-2)与点(-3,b)是同一个点,
∴a=-3,b=-2,
∴-5,
故选D.
【点睛】
本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键.
二、填空题
1、(2021,0)
【分析】
将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.
【详解】
∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得
∴A1点坐标为(2,0)
又∵A2为A1点绕O点顺时针旋转90°所得
∴A2点坐标为(0,-2)
又∵A3为A2点绕C点顺时针旋转90°所得
∴A3点坐标为(-3,1)
又∵A4为A3点绕A点顺时针旋转90°所得
∴A4点坐标为(1,5)
由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.
∵2021÷4=505…1
故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得
故A2021点坐标为(2021,0).
故答案为:(2021,0).
【点睛】
本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.
2、学习
【分析】
根据每一个点的坐标确定其对应的位置,最后写出答案.
【详解】
解:有序数对(5,3),(6,3)(7,3)(4,1)(4,4)对应的字母分别为S、T、U、D、Y,
组成的英文单词为study,中文为学习,
故答案为:学习.
【点睛】
此题考查了有序数对,正确理解有序数对的定义,确定各数对对应的字母是解题的关键.
3、7
【分析】
根据点(x,y)到x轴的距离等于|y|求解即可.
【详解】
解:点M 到x轴距离为|-7|=7,
故答案为:7.
【点睛】
本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.
4、-3
【分析】
点P在y轴上则该点横坐标为0,可解得m的值.
【详解】
解:在y轴上,
∴m+3=0,
解得m=-3.
故答案为:-3.
【点睛】
本题主要考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.
5、
【分析】
利用原点对称的点的坐标特征可知:M点和N点的横坐标之和与纵坐标之和都为0,得到关于、的二元一次方程组,解方程求出、的值,进而求出.
【详解】
和点关于原点对称,
解得:
,
故答案为:.
【点睛】
本题主要是考察了关于原点对称的点的特征,熟练掌握关于原点对称的点的横坐标之和与纵坐标之和都为0,是解决此类题的关键.
三、解答题
1、(1)作图见解析,(-1,﹣1);(2)作图见解析,(-1, 1),(-2, 3),(-4, 2);
【分析】
(1)根据A(1,1),B(3,2),C(2,4).即可画出△ABC关于原点O对称的的△A1B1C1,进而可以写出点A1的坐标;
(2)根据旋转的性质即可画出△ABC绕点O逆时针旋转90°后的△A2B2C2;进而可以写出点的坐标即可.
【详解】
解:(1)如图,△A1B1C1即为所求,
所以点A1的坐标为:(-1,﹣1);
(2)△A2B2C2即为所求;
点的坐标分别为:(-1, 1),(-2, 3),(-4, 2);
【点睛】
本题考查了作图﹣旋转变换和中心对称变换,解决本题的关键是掌握旋转的性质.
2、(1);(2)见解析;(3)7
【分析】
(1)根据平面直角坐标系直接写出点的坐标即可;
(2)分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)根据长方形减去三个三角形的面积即可求得△ABC 的面积
【详解】
(1)根据平面直角坐标系可得
故答案为:
(2)如图所示,分别将点的横坐标和纵坐标都加2得到,并顺次连接,则即为所求
(3)的面积等于
【点睛】
本题考查了坐标与图形,平移作图,掌握平移的性质是解题的关键.
3、(1)①见解析;②见解析;(2)M(2,1)
【分析】
(1)①利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;
②利用中心对称的性质分别作出A,B,C的对应点A2,B2,C2即可;
(3)对应点连线的交点M即为所求.
【详解】
解:(1)①如图,△A1B1C1即为所求;
②如图,△A2B2C2即为所求;
(2)如图,点M即为所求,M(2,1),
故答案为:(2,1).
【点睛】
本题考查作图−旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.
4、B(2,1),D(﹣2,﹣1).
【分析】
根据平行于x轴的直线上点的坐标的特点求出纵坐标,再根据AB=CD=3得出横坐标.
【详解】
解:∵AB∥CD∥x轴,A点坐标为(﹣1,1),点C(1,﹣1),
∴点B、D的纵坐标分别是1,﹣1,
∵AB=CD=3,
∴点B、D的横坐标分别是-1+3=2,1-3=-2,
∴B(2,1),D(﹣2,﹣1).
【点睛】
本题主要是考查平行于x轴的直线的特点,解题关键是明确平行于x轴的直线上点的纵坐标相同.
5、(1)见解析;(2)见解析
【分析】
(1)过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,先证得△ABM≌△BNQ,可得AB=BN,∠ABM=∠BNQ,从而得到∠ABN=90°,即可求解;
(2)在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,先证得△ACD≌△QBG,从而得到∠ACD=∠QBG,进而得到∠CHQ=90°,即可求解.
【详解】
解:(1)如图,过点B作MQ∥x轴,过点A作AM⊥MQ于点M,过点N作NQ⊥MQ于点Q,连接BN,连接AN交BC于点P,则∠BAP=45°,如图所示,点P即为所求,
理由如下:
根据题意得:AM=BQ=5,BM=QN=3,∠AMB=∠BQN=90°,
∴△ABM≌△BNQ,
∴AB=BN,∠ABM=∠BNQ,
∴∠BAP=∠BNP,
∵∠NBQ+∠BNQ=90°,
∴∠ABM +∠BNQ=90°,
∴∠ABN=90°,
∴∠BAP=∠BNP=45°;
(2)如图,在x轴负半轴取点Q,使OQ=2,连接BQ交AC于点H,则BH即为△ABC的高.
理由如下:
过点B作BG⊥x轴于点G,过点A作AD⊥x轴于点D,则AD=GQ=1,CD=BG=6,∠ADC=∠BGQ=90°,
∴△ACD≌△QBG,
∴∠ACD=∠QBG,
∵∠QBG+∠BQG=90°,
∴∠ACD +∠BQG=90°,
∴∠CHQ=90°,
∴BH⊥AC,即BH为△ABC的高.
【点睛】
本题主要考查了图形与坐标,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.
6、(1)图形见解析;(2)5
【分析】
(1)根据关于原点对称的点的坐标特征,依次求出的坐标即可;
(2)利用割补法求△A1B1C1面积.
【详解】
(1)∵
∴△ABC关于原点O对称的△A1B1C1位置如图:
(2)
【点睛】
此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.
7、(1)作图见详解;(2)作图见详解;(3)的面积为2.
【分析】
(1)直接在坐标系中描点,然后依次连线即可;
(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
【详解】
解:(1)如图所示,即为所求;
(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
然后描点、连线,
∴即为所求;
(3)由图可得:SΔCEF=12×2×2=2,
∴的面积为2.
【点睛】
题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
8、(1)见解析;(2)见解析;(3)(﹣4,﹣3)
【分析】
(1)分别作出A,B,C 的对应点A1,B1,C1即可.
(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
(3)根据所画图形,直接写出坐标即可.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)点B2的坐标为(﹣4,﹣3).
【点睛】
本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
9、(1)图见解析,;(2)图见解析,
【分析】
(1)写出,,关于原点对称的点,,,连接即可;
(2)连接OC,OB,根据旋转的90°可得,,,,,即可;
【详解】
(1),,关于原点对称的点,,,作图如下;
(2)连接OC,OB,根据旋转的90°可得,,,,,,其中点C2的坐标是(3,-1),作图如下:
【点睛】
本题主要考查了平面直角坐标系中图形的旋转,作关于原点对称的图形,准确分析作图是解题的关键.
10、(1)见详解;(2)△A1B1C1即为所求,见详解,(-2,1);(3)(0,3).
【分析】
(1)根据点A及点B的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;
(2)根据平面直角坐标系求出点C坐标,根据ABC关于y轴对称的图形为△A1B1C1,求出A1(-1,3),B1(-2,1),C1(-4,7),描点A1(-1,3),B1(-2,1),C1(-4,7),再顺次连接即可画出ABC关于y轴对称的图形为△A1B1C1;
(3)过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,直接利用轴对称求最短路线的方法,根据点C的对称点为C1,连接BC1与y轴相交,此交点即为点P即可得出PB+PC的值最小,先证△GBC1为等腰直角三角形,再证△PHB为等腰直角三角形,最后求出y轴交点坐标即可.
【详解】
解:(1)点A坐标为(1 ,3),点B坐标为(2 ,1)
点A向左平移1个单位为y轴,再向下平移3个单位为x轴,建立如图平面直角坐标系,
如图所示:即为作出的平面直角坐标系;
(2)根据图形得出出点C(4,7)
∵△ABC关于y轴对称的图形△A1B1C1,关于y轴对称的点的特征是横坐标互为相反数,纵坐标不变,
∵A(1,3),B (2,1),C(4,7),
∴A1(-1,3),B1(-2,1),C1(-4,7),
在平面直角坐标系中描点A1(-1,3),B1(-2,1),C1(-4,7),
顺次连接A1B1, B1C1, C1 A1,
如图所示:△A1B1C1即为所求,
故答案为:(-2,1);
(3)如图所示:点P即为所求作的点.过C1作y轴平行线与过B作x轴平行线交于G,BG交y轴于H,
∵点C的对称点为C1,
∴连接BC1与y轴相交于一点即为点P,此时PB+PC的值最小,
∵B(2,1),C1(-4,7),
∴C1G=7-1=6,BG=2-(-4)=6,
∴C1G=BG,
∴△GBC1为等腰直角三角形,
∴∠GBC1=45°,
∵∠OHB=90°,
∴△PHB为等腰直角三角形,
∴yP-1=2-0,
解得yP=3,
∴点P(0,3).
故答案为(0,3).
【点睛】
本题考查了建立平面直角坐标系,画轴对称图形,等腰直角三角形判定与性质,最短路径,掌握轴对称的性质及轴对称与坐标的变化规律并利用其准确作图,待定系数法求解析式是解答本题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课后测评,共30页。试卷主要包含了在平面直角坐标系中,点P,已知A,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十五章 平面直角坐标系综合与测试练习,共30页。试卷主要包含了若点P,点关于轴对称的点的坐标是,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试精练,共29页。试卷主要包含了点P,已知A等内容,欢迎下载使用。