![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12710935/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12710935/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12710935/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共27页。试卷主要包含了直线m外一点P它到直线的上点A,如图,直线a等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )A.139° B.141° C.131° D.129°2、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是( )A.0个 B.1个 C.2个 D.3个3、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.4、如所示各图中,∠1与∠2是对顶角的是( )A. B. C. D.5、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )A.3cm B.5cm C.6cm D.不大于3cm6、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°7、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70° B.80° C.100° D.110°8、如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角9、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段( )的长度A.CD B.AD C.BD D.BC10、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )A.100° B.140° C.160° D.105°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.2、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.3、如图,点C到直线AB的距离是线段 ___的长.4、如图,从人行横道线上的点P处过马路,下列线路中最短的是________.5、如图,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=3∠AOC,则∠BOD=________.三、解答题(10小题,每小题5分,共计50分)1、直线、相交于点,平分,,,求与的度数.2、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.证明:∵∠DAF=∠F(已知).∴AD∥BF( ),∴∠D=∠DCF( ).∵∠B=∠D(已知),∴( )=∠DCF(等量代换),∴AB∥DC( ).3、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.4、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空. (1)画直线AC;(2)画射线CD;(3)画线段BD;(4)过点D画垂线段DF⊥AB,垂足为F;(5)点D到直线AB的距离是线段 的长.5、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.6、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.将下列证明过程补充完整:证明:∵CE平分(已知),∴__________(角平分线的定义),∵(已知),∴___________(等量代换),∴(______________).(探究)已知:如图②,点E在AB上,且CE平分,.求证:.(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.7、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.8、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.9、如图,平面上有三个点A、B、C.(1)根据下列语句按要求画图.①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);②连接CA、CD、CB;③过点C画CE⊥AD,垂足为点E;④过点D画DF∥AC,交CB的延长线于点F.(2)①在线段CA、CE、CD中,线段_________最短,依据是_________.②用刻度尺或圆规检验DF与AC的大小关系为_________.10、如图,方格纸中每个小正方形的边长都是1.(1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.(2)求四边形PMAN的面积. -参考答案-一、单选题1、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF,∴∠A=∠CGB=41°,∵ABCD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.2、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误; (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.3、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.故选:B.【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.4、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.5、D【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,点到直线的距离,故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.6、B【分析】根据平行线的判定定理分析即可.【详解】A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;故选:B.【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.7、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.8、D【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.9、A【分析】根据和点到直线的距离的定义即可得出答案.【详解】解:,点到的距离是线段的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.10、B【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70°,射线AC的方向是南偏西30°, 而 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.二、填空题1、60°度【分析】由邻补角的定义,结合,可得答案.【详解】解: 故答案为:【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.2、3 2 2 【分析】根据同位角、内错角、同旁内角的定义判断即可;【详解】如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.3、CF【分析】根据点到直线的距离的定义即可求解.【详解】∵CF⊥BF,∴点到直线的距离是线段CF的长故答案为:CF.【点睛】此题主要考查点到直线的距离的判断,解题的关键是熟知点到直线的距离需要作垂线.4、PC【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC,故答案为:PC.【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.5、67.5°【分析】根据垂直的定义得到∠AOB=90°,可利用互余得∠AOC+∠BOD=90°,把∠AOC=∠BOD代入可计算出∠BOD.【详解】解:∵AO⊥BO,∴∠AOB=90°,∵∠COD=180°,∴∠AOC+∠BOD=90°,∵∠BOD=3∠AOC,∴∠BOD+∠BOD=90°,∴∠BOD=67.5°.故答案为67.5°.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质:过一点有且只有一条直线与已知直线垂直.三、解答题1、∠3=50°,∠2=65°.【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.2、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.3、(1)证明见解析;(2)证明见解析.【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.4、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DF⊥AB,垂足为F;(5)根据垂线段的长度是点到直线的距离解答即可.【详解】解:(1)直线AC如图所示;(2)射线CD如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF.【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.5、61.5°【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.6、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知∵CE平分(已知),∴ECD(角平分线的定义),∵(已知),∴ECD(等量代换),∴(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分,∴,∵,∴,∵.应用∵BE平分∠DBC,∴,∵AE∥BC,∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE,∵,∴∠ABC=80゜∴∴【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.7、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.【分析】(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.【详解】(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180°,∴AB∥CD(2)∠BAE+∠MCD=90°;理由如下:如图,过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠AEC=∠AEF+∠FEC=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD=∠MCD,∴∠BAE+∠MCD=90°.(3)如图,过点C作CM//PQ,∴∠PQC=∠MCN,∠QPC=∠PCM,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠PCQ+∠PCM+∠MCN=180°,∴∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC.【点睛】本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.8、∠C的度数为120°【分析】首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.【详解】解:∵∠CDE=150°, ∴∠CDB=180°-∠CDE=30°, 又∵ABCD, ∴∠ABD=∠CDB=30°,∵BE平分∠ABC, ∴∠ABC=2∠ABD=60°, ∵ABCD, ∴∠C=180°-∠ABC=120°.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.9、(1)见解析;(2)①;垂线段最短;②相等【分析】(1)根据题意作图即可;(2)根据垂线段最短以及圆规进行检验即可.【详解】(1)如图所示,即为所求;(2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;②用圆规检验DF=AC.【点睛】本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.10、(1)见解析;(2)18.【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:点M,点N即为所求;(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.【点睛】本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练,共30页。试卷主要包含了下列说法,如图木条a,下列说法中,正确的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,在等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共30页。