开学活动
搜索
    上传资料 赚现金

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试卷

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试卷第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试卷第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试卷第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共33页。
    七年级数学第二学期第十三章相交线 平行线专项训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在如图中,∠1和∠2不是同位角的是(  )
    A. B.
    C. D.
    2、如图,若AB∥CD,CD∥EF,那么BCE=( )

    A.180°-2+1 B.180°-1-2 C.2=21 D.1+2
    3、如图,木工用图中的角尺画平行线的依据是( )

    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    4、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    5、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
    6、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段(  )的长度

    A.CD B.AD C.BD D.BC
    7、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )
    A.第一次向右拐40°,第二次向右拐140°.
    B.第一次向右拐40°,第二次向左拐40°.
    C.第一次向左拐40°,第二次向右拐140°.
    D.第一次向右拐140°,第二次向左拐40°.
    8、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )

    A.4个 B.3个 C.2个 D.1个
    9、若直线a∥b,b∥c,则a∥c的依据是( ).
    A.平行的性质 B.等量代换
    C.平行于同一直线的两条直线平行. D.以上都不对
    10、下列说法中正确的有(  )个
    ①两条直线被第三条直线所截,同位角相等;
    ②同一平面内,不相交的两条线段一定平行;
    ③过一点有且只有一条直线垂直于已知直线;
    ④经过直线外一点有且只有一条直线与这条直线平行;
    ⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
    A.1 B.2 C.3 D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;

    2、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.

    3、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.

    4、在数学课上,王老师提出如下问题:
    如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.

    小李同学的作法如下:
    ①连接AB;
    ②过点A作AC⊥直线l于点C;
    则折线段B﹣A﹣C为所求.
    王老师说:小李同学的方案是正确的.
    请回答:该方案最节省材料的依据是垂线段最短和______.

    5、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
    (1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
    (2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
    (3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).

    2、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
    (1)过点C画AD的平行线CE;
    (2)过点B画CD的垂线,垂足为F.

    3、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.

    (1)如图1,若,试说明;
    (2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
    ①,当t为何值时,直线OE平分;
    ②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
    4、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)

    (1)当t=3时,求∠AOB的度数;
    (2)在运动过程中,当∠AOB达到60°时,求t的值;
    (3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
    5、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.

    (1)∵∠1=∠2(已知)
    ∴ CD( )
    ∴∠ABD+∠CDB = ( )
    (2)∵∠BAC =65°,∠ACD=115°,( 已知 )
    ∴∠BAC+∠ACD=180° (等式性质)
    ∴ABCD ( )
    (3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
    ∴∠ABD=∠CDF=90°( 垂直的定义)
    ∴ (同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = ( )
    6、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.

    解:∵,
    ∴( )
    ∵平分,平分.
    ∴, ( )

    ∴( )

    ∴( )
    7、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.

    8、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    9、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空.
    (1)画直线AC;
    (2)画射线CD;
    (3)画线段BD;
    (4)过点D画垂线段DF⊥AB,垂足为F;
    (5)点D到直线AB的距离是线段   的长.

    10、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.


    -参考答案-
    一、单选题
    1、D
    【分析】
    同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
    【详解】
    解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
    故选:D.
    【点睛】
    本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
    2、A
    【分析】
    根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.
    【详解】
    ∵AB∥CD,CD∥EF,
    ∴∠1=∠BCD,∠ECD+∠2=180°,
    ∴BCE=∠BCD+∠ECD=180°-2+1,
    故选A.
    【点睛】
    本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.
    3、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    4、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    5、D
    【分析】
    同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
    【详解】
    解:(同位角相等,两直线平行),故A不符合题意;
    ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;

    (同位角相等,两直线平行)故C不符合题意;
    ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
    所以不能判定 故D符合题意;
    故选D
    【点睛】
    本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
    6、A
    【分析】
    根据和点到直线的距离的定义即可得出答案.
    【详解】
    解:,
    点到的距离是线段的长度,
    故选:A.
    【点睛】
    本题考查了点到直线的距离,理解定义是解题关键.
    7、B
    【分析】
    画出图形,根据平行线的判定分别判断即可得出.
    【详解】
    A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;

    B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;

    C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;

    D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.

    故选:B.
    【点睛】
    本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.
    8、B
    【分析】
    由邻补角,角平分线的定义,余角的性质进行依次判断即可.
    【详解】
    解:∵∠AOE=90°,∠DOF=90°,
    ∴∠BOE=90°=∠AOE=∠DOF,
    ∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
    ∴∠EOF=∠BOD,∠AOF=∠DOE,
    ∴当∠AOF=50°时,∠DOE=50°;
    故①正确;
    ∵OB平分∠DOG,
    ∴∠BOD=∠BOG,
    ∴∠BOD=∠BOG=∠EOF=∠AOC,
    故④正确;
    ∵,
    ∴∠BOD=180°-150°=30°,

    故③正确;
    若为的平分线,则∠DOE=∠DOG,
    ∴∠BOG+∠BOD=90°-∠EOE,
    ∴∠EOF=30°,而无法确定,
    ∴无法说明②的正确性;
    故选:B.
    【点睛】
    本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
    9、C
    【分析】
    根据平行公理的推论进行判断即可.
    【详解】
    解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
    故选:C.
    【点睛】
    本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
    10、A
    【分析】
    根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.
    【详解】
    ①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;
    ②同一平面内,不相交的两条直线一定平行,故②不正确;
    ③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;
    ④经过直线外一点有且只有一条直线与这条直线平行,故④正确
    ⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.
    故正确的有④,共1个,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.
    二、填空题
    1、3.1
    【分析】
    根据点到直线,垂线段最短,即可求解.
    【详解】
    解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.
    故答案为:3.1
    【点睛】
    本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.
    2、6 12 6
    【分析】
    根据同位角、同旁内角和内错角的定义判断即可;
    【详解】
    如图所示:

    同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;
    同旁内角有:与;与;与;与;与;与,共有6对;
    内错角有:与;与;与;与;与;与,共有6对;
    故答案是:6;12;6.
    【点睛】
    本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.
    3、
    【分析】
    根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.
    【详解】
    解:如图,∵∠1=∠2=52°,
    ∴a∥b,
    ∴∠3=∠5=91°,
    ∵∠5+∠4=180°,
    ∴∠4=180°﹣∠5=89°.
    故答案为:89°.

    【点睛】
    此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
    4、两点之间线段最短
    【分析】
    根据两点之间线段最短即可得到答案.
    【详解】
    解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
    故答案为:两点之间线段最短.
    【点睛】
    本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
    5、平行
    【分析】
    过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.
    【详解】
    解:过点作,

    ∴,
    ∵∠BAC+∠ACE+∠CEF=360°,
    ∴,
    ∴,
    ∴,
    故答案为:平行.
    【点睛】
    本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.
    三、解答题
    1、(1);(2);(3)
    【分析】
    (1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
    (2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
    (3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
    【详解】
    解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
    ∴,,
    ∴;
    (2)根据题意,则
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    (3)根据题意,
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    【点睛】
    本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
    2、(1)见解析;(2)见解析
    【分析】
    (1)根据要求作出图形即可.
    (2)根据要求作出图形即可.
    【详解】
    解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
    所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
    如图,直线CE即为所求作.
    (2)根据题意得:CD是长为6,宽为3的长方形的对角线,
    所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
    如图,直线BF即为所求作.

    【点睛】
    本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
    3、(1)见解析;(2)①或;②
    【分析】
    (1)根据垂直的性质即可求解;
    (2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
    ②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∴.
    (2)①∵OB平分,,
    ∴.
    情况1:当OE平分时,
    则旋转之后,
    ∴OB旋转的角度为,
    ∴,.
    情况2:当OF平分时,同理可得,OB旋转的角度为,
    ∴,.
    综上所述,或.
    ②∵,
    ∴OP在内部,如图所示,

    由题意知,,
    ∴,∵OM平分,
    ∴,
    ∴,
    ∴.
    【点睛】
    此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
    4、(1)150°;(2)12或24;(3)存在,9秒、27秒
    【分析】
    (1)根据∠AOB=180°−∠AOM−∠BON计算即可.
    (2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
    (3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
    【详解】
    解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
    (2)当重合时,
    解得:
    当0≤t≤18时:


    4t+6t=120
    解得:
    当18≤t≤30时:则
    4t+6t=180+60,
    解得 t=24,
    答:当∠AOB达到60°时,t的值为6或24秒.
    (3) 当0≤t≤18时,由

    180−4t−6t=90,
    解得t=9,
    当18≤t≤30时,同理可得:
    4t+6t=180+90
    解得t=27.
    所以大于的答案不予讨论,
    答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
    【点睛】
    本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
    5、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
    【分析】
    (1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
    (2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
    (3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
    【详解】
    解:(1)∵∠1=∠2 (已知)
    ∴AB∥CD(内错角相等,两直线平行)
    ∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
    故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
    (2)∵∠BAC =65°,∠ACD=115°,(已知)
    ∴∠BAC+∠ACD=180° (等式性质 )
    ∴AB∥CD (同旁内角互补,两直线平行)
    故答案为:同旁内角互补,两直线平行;
    (3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
    ∴∠ABD=∠CDF=90°(垂直的定义)
    ∴AB ∥CD(同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = 125°.(两直线平行,同旁内角互补)
    故答案为:AB;CD;125°;两直线平行,同旁内角互补.
    【点睛】
    本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    6、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【分析】
    利用平行线的性质定理和判定定理解答即可.
    【详解】
    解:∵AB∥CD,
    ∴∠AME=∠CNE.(两直线平行,同位角相等),
    ∵MP平分∠AME,NQ平分∠CNE,
    ∴∠1=∠AME,=∠CNE.( 角平分线的定义),
    ∵∠AME=∠CNE,
    ∴∠1=∠2.(等量代换),
    ∵∠1=∠2,
    ∴MP∥NQ.(同位角相等,两直线平行).
    故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
    【点睛】
    此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
    7、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
    8、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    9、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF
    【分析】
    (1)连接AC并向两端延长即可;
    (2)连接CD并延长CD即可;
    (3)连接BD即可;
    (4)过D作线段DF⊥AB,垂足为F;
    (5)根据垂线段的长度是点到直线的距离解答即可.
    【详解】
    解:(1)直线AC如图所示;
    (2)射线CD如图所示;
    (3)线段BD如图所示;
    (4)垂线段DF如图所示;
    (5)垂线段DF的长是点D到直线AB的距离,
    故答案为:DF.

    【点睛】
    本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.
    10、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题:

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题,共28页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,不能推出a∥b的条件是,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map