终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题(精选)

    立即下载
    加入资料篮
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题(精选)第1页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题(精选)第2页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练练习题(精选)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业,共32页。试卷主要包含了如图所示,直线l1∥l2,点A,下列说法中正确的有个等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,若要使与平行,则绕点至少旋转的度数是( )

    A. B. C. D.
    2、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )

    A.70° B.80° C.100° D.110°
    3、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为(  )
    A.30° B.60° C.30°或60° D.60°或120°
    4、若直线a∥b,b∥c,则a∥c的依据是( ).
    A.平行的性质 B.等量代换
    C.平行于同一直线的两条直线平行. D.以上都不对
    5、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )

    A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°
    6、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )

    A.39° B.41° C.49° D.51°
    7、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是(  )
    A.48°,72° B.72°,108°
    C.48°,72°或72°,108° D.80°,120°
    8、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )

    A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
    9、下列说法中正确的有(  )个
    ①两条直线被第三条直线所截,同位角相等;
    ②同一平面内,不相交的两条线段一定平行;
    ③过一点有且只有一条直线垂直于已知直线;
    ④经过直线外一点有且只有一条直线与这条直线平行;
    ⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
    A.1 B.2 C.3 D.4
    10、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为(  )度.

    A.25° B.45° C.30° D.22°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.

    2、如图,已知AB⊥AC,AD⊥BC,则点A到BC的距离是线段____________的长度.

    3、如图,直线AB,CD相交于点O, 过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.

    4、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:

    证明:∵AB被直线GH所截,
    ∴_____

    ∴______
    ∴______________(________)(填推理的依据).
    5、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.

    三、解答题(10小题,每小题5分,共计50分)
    1、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
    证明:过点E作直线EF∥CD,
    ∠2=______,( )
    AB∥CD(已知),EF∥CD
    _____∥EF,( )
    ∠B=∠1,( )
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,( )
    方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.

    2、下列语句中,有一个是错误的,其余三个都是正确的:
    ①直线EF经过点C; ②点A在直线l外;
    ③直线AB的长为5 cm; ④两条线段m和n相交于点P.
    (1)错误的语句为________(填序号).
    (2)按其余三个正确的语句,画出图形.
    3、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
    (1)如图①,若∠BEF=130°,则∠FGC=   度;
    (2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
    (3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=   度.

    解:如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(    )
    又∵EM∥FG
    ∴∠FGC=∠EMC(    )
    ∠EFG+∠FEM=180°(    )
    即∠FGC=(    )(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(    )
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=   
    即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
    4、请把下列证明过程及理由补充完整(填在横线上):
    5、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    6、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.
    (1)用无刻度的直尺作图:
    ①过点A作ADOC;
    ②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;
    (2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.

    7、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.
    解:∵∠1=∠C,(已知)
    ∴GD∥   .( )
    ∴∠2=∠DAC.( )
    ∵∠2+∠3=180°,(已知)
    ∴∠DAC+∠3=180°.(等量代换)
    ∴AD∥EF.( )
    ∴∠ADC=∠   .( )
    ∵EF⊥BC,(已知)
    ∴∠EFC=90°.( )
    ∴∠ADC=90°.(等量代换)

    8、如图,AB与EF交于点B,CD与EF交于点D,根据图形,请补全下面这道题的解答过程.

    (1)∵∠1=∠2(已知)
    ∴ CD( )
    ∴∠ABD+∠CDB = ( )
    (2)∵∠BAC =65°,∠ACD=115°,( 已知 )
    ∴∠BAC+∠ACD=180° (等式性质)
    ∴ABCD ( )
    (3)∵CD⊥AB于D,EF⊥AB于F,∠BAC=55°(已知)
    ∴∠ABD=∠CDF=90°( 垂直的定义)
    ∴ (同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = ( )
    9、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.

    (1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
    (2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
    10、阅读下面的推理过程,将空白部分补充完整.
    已知:如图,在△ABC中,FGCD,∠1 = ∠3.

    求证:∠B + ∠BDE= 180°.
    解:因为FGCD(已知),
    所以∠1= .
    又因为∠1 = ∠3 (已知),
    所以∠2 = (等量代换).
    所以BC ( ),
    所以∠B + ∠BDE = 180°(___________________).

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据“两直线平行,内错角相等”进行计算.
    【详解】
    解:如图,

    ∵l1∥l2,
    ∴∠AOB=∠OBC=42°,
    ∴80°-42°=38°,
    即l1绕点O至少旋转38度才能与l2平行.
    故选:A.
    【点睛】
    考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
    2、B
    【分析】
    先证明DEBC,根据平行线的性质求解.
    【详解】
    解:因为∠B=∠ADE=70°
    所以DEBC,
    所以∠DEC+∠C=180°,所以∠C=80°.
    故选:B.
    【点睛】
    此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
    3、D
    【分析】
    根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
    【详解】
    解:如图1,
    ∵a∥b,
    ∴∠1=∠α,
    ∵c∥d,
    ∴∠β=∠1=∠α=60°;
    如图(2),
    ∵a∥b,
    ∴∠α+∠2=180°,
    ∵c∥d,
    ∴∠2=∠β,
    ∴∠β+∠α=180°,
    ∵∠α=60°,
    ∴∠β=120°.
    综上,∠β=60°或120°.
    故选:D.

    【点睛】
    本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
    4、C
    【分析】
    根据平行公理的推论进行判断即可.
    【详解】
    解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
    故选:C.
    【点睛】
    本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
    5、B
    【分析】
    由对顶角可知∠1=40°,故可知射线OB的方位角;
    【详解】
    解:由对顶角可知,∠1=40°
    所以射线OB的方位角是南偏西40°
    故答案为B

    【点睛】
    本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
    6、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,

    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    7、B
    【分析】
    根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
    【详解】
    解:∵两个角的两边两两互相平行,
    ∴这两个角可能相等或者两个角互补,
    ∵一个角的等于另一个角的,
    ∴这两个角互补,
    设其中一个角为x,则另一个角为,
    根据题意可得:,
    解得:,,
    故选:B.
    【点睛】
    题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
    8、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    9、A
    【分析】
    根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.
    【详解】
    ①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;
    ②同一平面内,不相交的两条直线一定平行,故②不正确;
    ③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;
    ④经过直线外一点有且只有一条直线与这条直线平行,故④正确
    ⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.
    故正确的有④,共1个,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.
    10、D
    【分析】
    由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
    【详解】
    解:由平移的性质知,AO∥SM,
    故∠WMS=∠OWM=22°;
    故选D.

    【点睛】
    本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    二、填空题
    1、
    【分析】
    如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.
    【详解】
    解:如图,,


    故答案为:.

    【点睛】
    本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.
    2、##
    【分析】
    根据定义分析即可,点到的距离,垂足在直线上,据此即可求得答案.
    【详解】

    点A到BC的距离是线段
    故答案为:
    【点睛】
    本题考查了垂线段的定义,理解定义是解题的关键.
    3、55
    【分析】
    由已知可得,,进而根据,∠1=35º,即可求得.
    【详解】
    EF⊥AB,

    ,∠1=35º,

    故答案为:55
    【点睛】
    本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.
    4、3 180° AB CD 同旁内角互补,两直线平行
    【分析】
    先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.
    【详解】
    证明:∵AB被直线GH所截,∠1=112°,
    ∴∠1=∠3=112°
    ∵∠2=68°,
    ∴∠2+∠3=180°,
    ∴AB∥CD,(同旁内角互补,两直线平行)
    故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.
    【点睛】
    本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.
    5、110︒度
    【分析】
    根据平行线的性质和角平分线的性质可得结论.
    【详解】
    解:∵AD//BC

    ∵CE平分∠DCF


    ∵AB//CD

    ∵AD//BC


    故答案为:110︒
    【点睛】
    本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
    三、解答题
    1、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
    【分析】
    过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
    【详解】
    解:过点E作直线EF∥CD,
    ∠2=∠D,(两直线平行,内错角相等)
    AB∥CD(已知),EF∥CD
    AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
    ∠B=∠1,(两直线平行,内错角相等)
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,(等量代换 )
    方法与实践:如图②,
    ∵直线AB∥CD
    ∴∠BOD=∠D=53°
    ∵∠BOD=∠E+∠B
    ∴∠E=∠BOD-∠B=53°- 22°=31°.
    故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.

    【点睛】
    本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
    2、(1)③;(2)见解析
    【分析】
    (1)点与直线的位置关系,直线的定义,两条直线的位置关系,逐项判断即可求解;
    (2)根据点与直线的位置关系,两条直线的位置关系,画出图形,即可求解.
    【详解】
    解:(1)①直线EF经过点C,故本说法正确;
    ②点A在直线l外,故本说法正确;
    ③因为直线向两端无限延伸,所以长度无法测量,故本说法错误;
    ④两条线段m和n相交于点P,故本说法正确;
    所以错误的语句为③;
    (2)图形如图所示:

    【点睛】
    本题主要考查了点与直线的位置关系,直线的定义,两条直线的位置关系,熟练掌握相关知识点是解题的关键.
    3、(1)40°;(2)见解析;(3)70°
    【分析】
    (1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
    (2)根据题目补充理由和相关结论即可;
    (3)类似(2)中的方法求解即可.
    【详解】
    解:(1)过点F作FN∥AB,
    ∵FN∥AB,∠FEB=130°,
    ∴∠EFN+∠FEB=180°,
    ∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
    ∵∠EFG=90°,
    ∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
    ∵AB∥CD,
    ∴FN∥CD,
    ∴∠FGC=∠NFG=40°.
    故答案为:40°;

    (2)如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(两直线平行,内错角相等)
    又∵EM∥FG
    ∴∠FGC=∠EMC(两直线平行,同位角相等)
    ∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
    即∠FGC=(∠BEM)(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=90°
    故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
    (3)过点E作EH∥FG,交CD于点H.
    ∵AB∥CD
    ∴∠BEH=∠EHC
    又∵EM∥FG
    ∴∠FGC=∠EHC
    ∠EFG+∠FEH=180°
    即∠FGC=∠BEH
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
    又∵∠EFG=110°
    ∴∠FEH=70°
    ∴∠FEB﹣∠FGC=70°
    故答案为:70°.

    【点睛】
    本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
    4、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
    【分析】
    根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
    【详解】
    证明:∵AD∥BC(已知),
    ∴∠3=∠CAD(两直线平行,内错角相等).
    ∵∠3=∠4(已知),
    ∴∠4=∠CAD(等量代换).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(等式的性质).
    即∠BAF=∠CAD.
    ∴∠4=∠BAF.(等量代换).
    ∴AB∥CD(同位角相等,两直线平行).
    【点睛】
    本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
    5、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    6、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析
    【分析】
    (1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.
    (2)根据角的和差定义证明即可.
    【详解】
    解:(1)①如图,直线AD即为所求作.
    ②∠AOE即为所求作.

    (2)∠AOC+∠BOE=180°.
    理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,
    ∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.
    【点睛】
    本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.
    7、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义
    【分析】
    根据平行线的判定与性质以及垂直的定义即可完成填空.
    【详解】
    解:如图,

    ∵∠1=∠C,(已知)
    ∴,(同位角相等,两直线平行)
    ∴∠2=∠DAC,(两直线平行,内错角相等)
    ∵∠2+∠3=180°,(已知)
    ∴∠DAC+∠3=180°,(等量代换)
    ∴,(同旁内角互补,两直线平行)
    ∴∠ADC=∠EFC,(两直线平行,同位角相等)
    ∵EF⊥BC,(已知)
    ∴∠EFC=90°,(垂直的定义)
    ∴∠ADC=90°.(等量代换)
    【点睛】
    本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.
    8、(1)AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;(2)同旁内角互补,两直线平行;(3)AB;CD;125°;两直线平行,同旁内角互补.
    【分析】
    (1)由题意直接依据内错角相等,两直线平行进行分析以及两直线平行,同旁内角互补即可;
    (2)由题意直接依据同旁内角互补,两直线平行进行分析即可;
    (3)由题意直接根据两直线平行,同旁内角互补进行分析即可得出结论.
    【详解】
    解:(1)∵∠1=∠2 (已知)
    ∴AB∥CD(内错角相等,两直线平行)
    ∴∠ABD+ ∠BDC =180°(两直线平行,同旁内角互补)
    故答案为:AB;内错角相等,两直线平行;180°;两直线平行,同旁内角互补;
    (2)∵∠BAC =65°,∠ACD=115°,(已知)
    ∴∠BAC+∠ACD=180° (等式性质 )
    ∴AB∥CD (同旁内角互补,两直线平行)
    故答案为:同旁内角互补,两直线平行;
    (3)∵CD⊥AB于D,EF⊥AB于F ,∠BAC=55°,(已知)
    ∴∠ABD=∠CDF=90°(垂直的定义)
    ∴AB ∥CD(同位角相等,两直线平行)
    又∵∠BAC=55°,(已知)
    ∴∠ACD = 125°.(两直线平行,同旁内角互补)
    故答案为:AB;CD;125°;两直线平行,同旁内角互补.
    【点睛】
    本题考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.
    9、(1);(2)∠ABC的度数改变,度数为.
    【分析】
    (1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
    (2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
    【详解】
    (1)如图1,过点作.

    ∵,
    ∴,
    ∴.
    ∵平分平分,,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)的度数改变.
    画出的图形如图2,过点作.

    ∵平分,平分,,
    ∴ .
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
    10、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【分析】
    首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.
    【详解】
    解:因为FGCD(已知),
    所以∠1=∠2.
    又因为∠1 = ∠3 (已知),
    所以∠2 =∠3(等量代换).
    所以(内错角相等,两直线平行),
    所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).
    故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共29页。试卷主要包含了下列说法中,正确的是,下列说法中正确的有等内容,欢迎下载使用。

    沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题,共28页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中正确的个数是等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试课时练习:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试课时练习,共31页。试卷主要包含了如图,直线b,如图,直线AB等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map