搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(精选)

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(精选)第1页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(精选)第2页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共29页。试卷主要包含了下列语句中,如图木条a等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线被所截,下列说法,正确的有(    是同旁内角;是内错角;是同位角;是内错角.A.①③④ B.③④ C.①②④ D.①②③④2、若∠1与∠2是内错角,则它们之间的关系是 (   A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠23、下列各图中,∠1与∠2是对顶角的是(  )A. B.C. D.4、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有(    A.1个 B.2个 C.3个 D.4个5、如图,若ABCDCDEF,那么BCE=(    A.180°-2+1 B.180°-1-2 C.2=21 D.1+26、如图所示,ABCD,若∠2是∠1的2倍,则∠2等于(  )A.60° B.90° C.120° D.150°7、如图,直线l1l2,直线l3l1l2分别相交于点ACBCl3l1于点B,若∠2=30°,则∠1的度数为(  )A.30° B.40° C.50° D.60°8、如图木条abc用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线ACDFMN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是(        A.木条bc固定不动,木条a绕点B顺时针旋转20°B.木条bc固定不动,木条a绕点B逆时针旋转160°C.木条ac固定不动,木条b绕点E逆时针旋转20°D.木条ac固定不动,木条b绕点E顺时针旋转110°9、如所示各图中,∠1与∠2是对顶角的是(    A. B. C. D.10、如图,直线相交于点平分,给出下列结论:①当时,;②的平分线;③若时,;④.其中正确的结论有(    A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,长方形纸片ABCDADBCABCD,∠A=90°,将纸片沿EF折叠,使顶点CD分别落在点C'、D'处,C'EAF于点G.若∠CEF=68°,则么∠GFD'=______°.2、如图在△ABC中,ABAC=5,SABC=10,AD是△ABC的中线,FAD上的动点,EAC边上的动点,则CFEF的最小值为______.3、如图,AD是∠EAC的平分线,ADBC,∠B=40°,则∠DAC的度数为____.4、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在ABAC上,DEBC,若∠B=70°,则∠BDF的度数为____.5、如图,ABC为直线l上的点,D为直线l外一点,若,则的度数为______.三、解答题(10小题,每小题5分,共计50分)1、如图,已知,试说明直线ADBC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).理由:C,(已知)                  ,(                       .(             ,(已知)        =180°.(等量代换)                  ,(             .(             ,(已知)                  2、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  3、如图,直线交于点于点,且的度数是的4倍.(1)求的度数;(2)求的度数.4、如图,直线相交于点平分(1)若,求∠BOD的度数;(2)若,求∠DOE的度数.5、完成下列说理过程(括号中填写推理的依据):已知:如图,直线ABCD相交于点O.求证:证明:.(            直线ABCD相交于点O        .(            直线相交于                 .(             6、如图,现有以下3个论断:①ABCD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.(1)你构造的是哪几个命题?(2)请选择其中一个真命题加以证明.7、已知:如图,中,点分别在上,于点(1)求证:(2)若平分,求的度数.8、已知:如图,ABCDEF,点GHM分别在ABCDEF上.求证:9、如图,P之间的一点,已知,求∠1的度数.10、如图,平面上有三个点ABC(1)根据下列语句按要求画图.①画射线AB,用圆规在线段AB的延长线上截取BDAB(保留作图痕迹);②连接CACDCB③过点CCEAD,垂足为点E④过点DDFAC,交CB的延长线于点F(2)①在线段CACECD中,线段_________最短,依据是_________.②用刻度尺或圆规检验DFAC的大小关系为_________. -参考答案-一、单选题1、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①是同旁内角,说法正确;是内错角,说法正确;是同位角,说法正确;是内错角,说法正确,故选:D【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.2、D【分析】根据内错角角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,内错角才可能相等,∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能,故选D.【点睛】本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.3、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.故选:B.【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.4、A【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.5、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】ABCDCDEF∴∠1=∠BCD,∠ECD+∠2=180°,BCE=∠BCD+∠ECD=180°-2+1,故选A【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.6、C【分析】先由ABCD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵ABCD∴∠1=∠CEF又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.7、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BCl3l1于点B∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,l1l2∴∠1=∠CAB=60°.故选:D【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.8、D【分析】根据同位角相等,两直线平行,逐项判断即可.【详解】解:A、木条bc固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;B、木条bc固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;C、木条ac固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;D、木条ac固定不动,木条b绕点E顺时针旋转110°,木条bc重合,则 ,故本选项错误,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.9、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.10、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE∴当∠AOF=50°时,∠DOE=50°;故①正确;OB平分∠DOG∴∠BOD=∠BOG∴∠BOD=∠BOG=∠EOF=∠AOC故④正确;∴∠BOD=180°-150°=30°,故③正确;的平分线,则∠DOE=∠DOG∴∠BOG+∠BOD=90°-∠EOE∴∠EOF=30°,而无法确定∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.二、填空题1、44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∵ADBC∴∠DFE=180°−∠CEF=180°−68°=112°,∴∠DFE=112°,∠GFE=180°−112°=68°,∴∠GFD′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.2、4【分析】E关于AD的对称点M,连接CMADF,连接EF,过CCNABN,根据三角形面积公式求出CN,根据对称性质求出CFEFCM,根据垂线段最短得出CFEF即可得出答案.【详解】解:方法一:作E关于AD的对称点M,连接CMADF,连接EF,过CCNABNSABC×AB×CNCN=4,E关于AD的对称点MEFFMCFEFCFFMCM根据垂线段最短得出:CMCNCFEF≥4,CFEF的最小值是4.方法二:∵ABACAD是△ABC的中线,ADBC∴点C与点B关于AD对称,BBEACE,交ADF,连接CF则此时,CFEF的值最小,且最小值为BESABCACBE=10,BE=4,CFEF的最小值4,故答案为:4.【点睛】本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取EC对称点连接是解题的关键.3、40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】ADBC,∠B=40°,∴∠EAD=∠B=40°,AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.4、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.5、60°度【分析】由邻补角的定义,结合,可得答案.【详解】解: 故答案为:【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.三、解答题1、GDAC;同位角相等,两直线平行;;两直线平行,内错角相等;ADEF;同旁内角互补,两直线平行;两直线平行,同位角相等;ADBC【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:已知同位角相等,两直线平行两直线平行,内错角相等,(已知)(等量代换)同旁内角互补,两直线平行)(两直线平行,同位角相等),(已知) 【点睛】本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.2、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.3、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OECD∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.4、(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∵∠AOE=40°,∴∠AOF=180°-∠AOE=140°,OC平分∠AOF∴∠AOC=AOF=70°,OAOB∴∠AOB=90°,∴∠BOD=180°-∠AOB-∠AOC=20°;(2)∵∠BOE=30°,OAOB∴∠AOE=60°,∴∠AOF=180°-∠AOE=120°,OC平分∠AOF∴∠AOC=AOF=60°,∴∠COE=∠AOE+∠AOC=60°+60°=120°,∴∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.5、①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【分析】根据证明过程判断从上一步到下一步的理由即可.【详解】证明:.(①角平分线定义)直线ABCD相交于点O.(等角的余角相等)直线相交于.(⑤同角的补角相等)故答案为:①角平分线定义;②;③等角的余角相等;④;⑤同角的补角相等【点睛】本题考查了对顶角、余角和补角的性质、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.6、(1)由①②得③,由①③得②,由②③得①;(2)由①②得③,见解析【分析】(1)分别以其中2句话为条件,第三句话为结论可写出3个命题;(2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.【详解】(1)由①②得③;由①③得②;由②③得①.(2)证明:由①②得③;ABCD∴∠EAB=∠C又∵∠B=∠C∴∠EAB=∠BCEBF∴∠E=∠F【点睛】本题考查了命题与定理,平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.7、(1)见解析;(2)72°【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC=180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFEEF//AB∴∠ADE=∠1,又∵∴∠ADE=∠B,DE//BC(2)∵平分∴∠ADE=∠EDCDE//BC∴∠ADE=∠B∴∠5+∠ADE+∠EDC=180°,解得:∴∠ADC=2∠B=72°,EF//AB∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8、见解析【分析】ABCDEF可得,,即可证明.【详解】证明:∵ABCD(已知)(两直线平行,内错角相等) 又 ∵CDEF(已知)(两直线平行,内错角相等)  (已知)(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.9、30°【分析】首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.【详解】过点P作射线,如图①.,∴又∵【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.10、(1)见解析;(2)①;垂线段最短;②相等【分析】(1)根据题意作图即可;(2)根据垂线段最短以及圆规进行检验即可.【详解】(1)如图所示,即为所求;(2)①根据垂线段最短可知,在线段CACECD中,线段CE最短;②用圆规检验DF=AC【点睛】本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共27页。试卷主要包含了如图,直线b,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试一课一练:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试一课一练,共34页。试卷主要包含了如图,在,直线等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共29页。试卷主要包含了下列说法中正确的有等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map