初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练,共31页。试卷主要包含了如图,,交于点,,,则的度数是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
2、下列说法:
①和为180°且有一条公共边的两个角是邻补角;
②过一点有且只有一条直线与已知直线垂直;
③同位角相等;
④经过直线外一点,有且只有一条直线与这条直线平行,
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
3、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
4、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°
5、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
A.164°12' B.136°12' C.143°88' D.143°48'
6、如所示各图中,∠1与∠2是对顶角的是( )
A. B. C. D.
7、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
8、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
9、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
10、如图,下列条件中,不能判断∥的是( )
A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.
2、如图所示,过点P画直线a的平行线b的作法的依据是___________.
3、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.
4、如图,若,被所截,则与______________是内错角.
5、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.
三、解答题(10小题,每小题5分,共计50分)
1、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
2、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
3、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
4、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
5、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
(1)过点M画BC的平行线MN交AB于点N;
(2)过点D画BC的垂线DE,交AB于点E;
(3)点E到直线BC的距离是线段 的长度.
6、完成下列证明:已知,,垂足分别为、,且,求证.
证明:,(已知),
( )
( )
( )
又(已知)
( )
( )
7、已知,,三点在同一条直线上,平分,平分.
(1)若,如图1,则 ;
(2)若,如图2,求的度数;
(3)若如图3,求的度数.
8、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
9、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
10、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
-参考答案-
一、单选题
1、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
2、B
【分析】
根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
【详解】
解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
其中正确的有④一共1个.
故选择B.
【点睛】
本题考查基本概念的理解,掌握基本概念是解题关键.
3、B
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
4、A
【分析】
如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
【详解】
解:如图,∵AECF,
∴∠A=∠CGB=41°,
∵ABCD,
∴∠C=180°-∠CGB=139°.
故选:A
【点睛】
本题考查了平行线的性质,熟知平行线的性质是解题关键.
5、D
【分析】
根据邻补角及角度的运算可直接进行求解.
【详解】
解:由图可知:∠AOC+∠BOC=180°,
∵∠COB=36°12',
∴∠AOC=180°-∠BOC=143°48',
故选D.
【点睛】
本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
6、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
7、A
【分析】
根据题意分析判断即可;
【详解】
由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;
第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;
第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;
第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;
综上所述,符合条件的是A.
故选:A.
【点睛】
本题主要考查了平行的判定与性质,准确分析判断是解题的关键.
8、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
9、C
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
10、D
【分析】
根据平行线的判定定理对各选项进行逐一判断即可.
【详解】
解:、,内错角相等,
,故本选项错误,不符合题意;
、,同位角相等,
,故本选项错误,不符合题意;
、,同旁内角互补,
,故本选项错误,不符合题意;
、,它们不是内错角或同位角,
与的关系无法判定,故本选项正确,符合题意.
故选:D.
【点睛】
本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.
二、填空题
1、
【分析】
如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.
【详解】
解:如图,,
,
,
故答案为:.
【点睛】
本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.
2、内错角相等,两直线平行
【分析】
根据平行线的判定方法解决问题即可.
【详解】
解:由作图可知,
,
(内错角相等两直线平行),
故答案为:内错角相等,两直线平行.
【点睛】
本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.
3、①
【分析】
根据相交线与平行线中的一些概念、性质判断,得出结论.
【详解】
①等角的余角相等,故正确;
②中,需要前提条件:过直线外一点,故错误;
③中,相等的角不一定是对顶角,故错误;
④中,仅当两直线平行时,同位角才相等,故错误;
⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.
故答案为:①.
【点睛】
本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.
4、
【分析】
根据内错角的定义填空即可.
【详解】
解:与是内错角,
故答案为
【点睛】
本题主要考查内错角的定义,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
5、70
【分析】
根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.
【详解】
解:∵ABCD,
∴∠C+∠CAB=180°,
∵∠C=40°,
∴∠CAB=180°-40°=140°,
∵AE平分∠CAB,
∴∠EAB=70°,
∵ABCD,
∴∠AEC=∠EAB=70°,
故答案为70.
【点睛】
本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.
三、解答题
1、角平分线的定义,平角的定义,
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
2、(1)两角相等,见解析;(2)180°
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
3、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
4、∠2=115°,∠3=65°,∠4=115°
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
5、(1)见解析;(2)见解析;(3)DE
【分析】
(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
(2)根据垂线的定义作图即可;
(3)根据点到直线的距离的定义求解即可.
【详解】
解:(1)如图所示,点N即为所求;
(2)如图所示,点E即为所求;
(3)由题意可知:点E到直线BC的距离是线段DE的长度,
故答案为:DE.
【点睛】
本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
6、见详解
【分析】
根据垂直的定义及平行线的性质与判定可直接进行求解.
【详解】
证明:,(已知),
(垂直的定义)
(同位角相等,两直线平行)
(两直线平行,同位角相等)
又(已知)
(等量代换)
(内错角相等,两直线平行).
【点睛】
本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.
7、(1)90;(2)90°;(3)90°
【分析】
(1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
(2)由,则,同(1)即可得出结果;
(3)易证,同(1)得,,即可得出结果.
【详解】
解:(1),,三点在同一条直线上,
,
,
,
平分,平分,
,,
,
故答案为:90;
(2),
,
同(1)得:,,
;
(3),
,
同(1)得:,,
.
【点睛】
本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
8、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
9、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
【分析】
(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
【详解】
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)∠BAE+∠MCD=90°;理由如下:
如图,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=∠AEF+∠FEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD=∠MCD,
∴∠BAE+∠MCD=90°.
(3)如图,过点C作CM//PQ,
∴∠PQC=∠MCN,∠QPC=∠PCM,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠PCQ+∠PCM+∠MCN=180°,
∴∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【点睛】
本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
10、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
相关试卷
这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试综合训练题,共28页。试卷主要包含了如图,直线AB,下列说法中正确的有个等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共29页。试卷主要包含了如图,已知,,平分,则,如图,下列条件中能判断直线的是,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
这是一份数学第十三章 相交线 平行线综合与测试课时作业,共28页。