![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12709136/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12709136/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线重点解析试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12709136/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。试卷主要包含了下列说法中正确的有个,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是( )A.0个 B.1个 C.2个 D.3个2、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )A.S1>S2 B.S1=S2 C.S1<S2 D.不确定3、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°4、下列说法中正确的有( )个①两条直线被第三条直线所截,同位角相等;②同一平面内,不相交的两条线段一定平行;③过一点有且只有一条直线垂直于已知直线;④经过直线外一点有且只有一条直线与这条直线平行;⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.1 B.2 C.3 D.45、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )A.39° B.41° C.49° D.51°6、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对7、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.8、如图,能判定AB∥CD的条件是( )A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠29、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°10、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )A.77° B.64° C.26° D.87°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.2、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.3、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.4、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.5、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.三、解答题(10小题,每小题5分,共计50分)1、如图,已知点O是直线AB上一点,射线OM平分.(1)若,则______度;(2)若,求的度数.2、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3= ( ).∵∠3=∠4(已知),∴∠4= ( ).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF( ).即∠BAF= .∴∠4=∠BAF.( ).∴AB∥CD( ).4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.3、如图,直线相交于点平分.(1)若,求∠BOD的度数;(2)若,求∠DOE的度数.4、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.5、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.6、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.7、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.8、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)9、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.10、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B画CD的垂线,垂足为F. -参考答案-一、单选题1、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误; (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.2、B【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.3、C【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.4、A【分析】根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.【详解】①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;②同一平面内,不相交的两条直线一定平行,故②不正确;③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;④经过直线外一点有且只有一条直线与这条直线平行,故④正确⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.故正确的有④,共1个,故选A.【点睛】本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.5、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,∵AB∥CD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),∵AE∥CF,∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.6、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.7、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A.故选:A.【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.8、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.9、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.10、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.二、填空题1、50°【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.2、PC 垂线段最短 【分析】根据垂线段最短求解即可.【详解】解:∵,PA,PB,PD都不垂直于AD,∴由垂线段最短可得,最短的线段是PC,理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.3、130°或50°【分析】根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可【详解】①如图,, , ②如图,, ,综上所述,或故答案为:130°或50°【点睛】本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.4、40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.5、【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,又∵∠1比∠2大4°,∴,∴,∴;故答案是.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.三、解答题1、(1),(2)【分析】(1)根据平角的定义可求;(2)根据和,代入解方程求出即可.【详解】解:(1)∵,∴,故答案为:.(2)∵OM平分,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.2、(1)∠BOC=60°(2)见解析【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.3、(1)20°;(2)60°【分析】(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.【详解】解:(1)∵∠AOE=40°,∴∠AOF=180°-∠AOE=140°,∵OC平分∠AOF,∴∠AOC=∠AOF=70°,∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°-∠AOB-∠AOC=20°;(2)∵∠BOE=30°,OA⊥OB,∴∠AOE=60°,∴∠AOF=180°-∠AOE=120°,∵OC平分∠AOF,∴∠AOC=∠AOF=60°,∴∠COE=∠AOE+∠AOC=60°+60°=120°,∴∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.4、(1)见解析;(2)34°【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.5、60°【分析】由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.【详解】解:CD⊥AB于D,FE⊥AB于E,∴,∴∠2=∠4,又∵∠1=∠2,∴∠1=∠4,∴,∴.【点睛】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.6、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.7、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.8、3.15【分析】根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可【详解】解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,故答案为:3.15.【点睛】本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.9、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.10、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共31页。试卷主要包含了下列命题中,为真命题的是,下列关于画图的语句正确的是.等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共29页。试卷主要包含了如图,直线a,如图,下列条件中能判断直线的是,直线等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了如图,直线AB,下列关于画图的语句正确的是.等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)