


沪教版 (五四制)第十三章 相交线 平行线综合与测试课后练习题
展开
这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试课后练习题,共33页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,直线b,下列说法等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
3、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
4、在如图中,∠1和∠2不是同位角的是( )
A. B.
C. D.
5、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
6、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
7、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
8、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
9、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
A.① B.②和③ C.④ D.①和④
10、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
已知:如图,b∥a,c∥a,
求证:b∥c;
证明:作直线DF交直线a、b、c分
别于点D、E、F,
∵a∥b,∴∠1=∠4,又∵a∥c,
∴∠1=∠5,
∴b∥c.
小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
A.嘉淇的推理严谨,不需要补充
B.应补充∠2=∠5
C.应补充∠3+∠5=180°
D.应补充∠4=∠5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.
2、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.
3、规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.
4、如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为________.
5、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,直线相交于点平分.
(1)若,求∠BOD的度数;
(2)若,求∠DOE的度数.
2、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.
证明:∵AD∥BC(已知),
∴∠3= ( ).
∵∠3=∠4(已知),
∴∠4= ( ).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF( ).
即∠BAF= .
∴∠4=∠BAF.( ).
∴AB∥CD( ).
4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
(1)求∠BOC的度数;
(2)试说明OE平分∠AOC.
3、如图,∠ENC+∠CMG=180°,AB∥CD.
(1)求证:∠2=∠3.
(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.
4、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.
5、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
6、如果把图看成是直线AB,EF被直线CD所截,那么
(1)∠1与∠2是一对什么角?
(2)∠3与∠4呢?∠2与∠4呢?
7、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.
(1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
(2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
8、如图,已知,平分,平分,求证.
证明:∵平分(已知),
∴ ( ),
同理 ,
∴ ,
又∵(已知)
∴ ( ),
∴.
9、请把下列证明过程及理由补充完整(填在横线上):
10、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
解:∵,
∴( )
∵平分,平分.
∴, ( )
∵
∴( )
∵
∴( )
-参考答案-
一、单选题
1、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
2、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
3、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
4、D
【分析】
同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
【详解】
解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
故选:D.
【点睛】
本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
5、B
【分析】
由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
【详解】
解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
故选:B.
【点睛】
本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
6、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
7、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
8、B
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
9、A
【分析】
利用平行线的性质逐一判断即可.
【详解】
①是平行线的性质,故符合题意;
②是平行线的判定,故不符合题意;
③是平行线的判定,故不符合题意;
④是平行线的判定,故不符合题意;
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
10、D
【分析】
根据平行线的性质与判定、平行公理及推论解决此题.
【详解】
解:证明:作直线DF交直线a、b、c分别于点D、E、F,
∵a∥b,
∴∠1=∠4,
又∵a∥c,
∴∠1=∠5,
∴∠4=∠5.
∴b∥c.
∴应补充∠4=∠5.
故选:D.
【点睛】
本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
二、填空题
1、50°
【分析】
根据平行线的性质计算即可;
【详解】
解:如图所示,由折叠可得,∠3=∠1=65°,
∴∠CEG=130°,
∵AB∥CD,
∴∠2=180°﹣∠CEG=180°﹣130°=50°.
故答案为:50°.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
2、20°或125°或20°
【分析】
根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.
【详解】
解:∵∠1与∠2的两边分别平行,
∴∠1,∠2相等或互补,
①当∠1=∠2时,
∵∠2=3∠1-40°,
∴∠2=3∠2-40°,
解得∠2=20°;
②当∠1+∠2=180°时,
∵∠2=3∠1-40°,
∴∠1+3∠1-40°=180°,
解得∠1=55°,
∴∠2=180°-∠1=125°;
故答案为:20°或125°.
【点睛】
本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.
3、a1∥a100;
【分析】
从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1∥a4,a1∥a5;a1⊥a2,a1 ⊥a3;且a1与an的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1∥a100.
【详解】
解:在同一平面内有直线两直线的位置,
关系是相交或平行,如图所示:
∵a1⊥a2,a2∥a3,
∴a1 ⊥a3,
又∵a3⊥a4,
∴a1∥a4,
又∵a4∥as,
∴a1∥a5,
又∵a5⊥a6,
∴a1⊥a6,
又∵a6∥a7,
∴a1⊥a7,
…
从以上的规律可知:a1与an的位置关系是4为周期进行循环,
若下角标的余数为0或1时与a1平行;若下角标的余数为2或3时与a1垂直.
∵100=4×25,
∴a1∥a100,
故答案为:a1∥a100.
【点睛】
本题综合考查了平行线的性质,同一平面内图形的变化规律,倍数和余数的运用等相关知识点,重点是掌握平行线的性质,难点是掌握由特殊到一般图形变化规律在几何中的运用.
4、120°
【分析】
要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.
【详解】
解:∵a∥b,∠1=60°,
∴∠3=120°,
∴∠2=∠3=120°.
故答案为:120°
【点睛】
考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.
5、##
【分析】
如图,标注字母,过作 再证明证明从而可得答案.
【详解】
解:如图,标注字母,过作
∠1=52°,
故答案为:
【点睛】
本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.
三、解答题
1、(1)20°;(2)60°
【分析】
(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
【详解】
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
2、
(1)∠BOC=60°
(2)见解析
【分析】
(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
【详解】
(1)∵∠AOB=∠BOC+∠AOC=180°,
又∠BOC:∠AOC=1:2,
∴∠AOC=2∠BOC,
∴∠BOC+2∠BOC=180°,
∴∠BOC=60°;
(2)∵OD平分∠BOC,
∴∠BOD=∠DOC,
∵∠DOC+∠COE=90°,∠AOB是平角,
∴∠AOE+∠BOD=90°,
∴∠AOE=∠COE
即OE平分∠AOC.
【点睛】
本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
3、(1)见解析;(2)34°
【分析】
(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;
(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.
【详解】
(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,
∴∠ENC+∠FMN=180°,
∴FG∥ED,
∴∠2=∠D,
∵AB∥CD,
∴∠3=∠D,
∴∠2=∠3;
(2)解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=∠1+70°,∠ACB=42°,
∴∠1+70°+∠1+42°=180°,
∴∠1=34°,
∵AB∥CD,
∴∠B=∠1=34°.
故答案为:34°.
【点睛】
本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.
4、平行,见解析
【分析】
先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.
【详解】
解:CD∥AB.理由如下:
∵BF、DE分别是∠ABC、∠ADC的角平分线,
∴∠3=∠ADC,∠2=∠ABC.
∵∠ABC=∠ADC,
∴∠3=∠2.
又∵∠1=∠2,
∴∠3=∠1.
∴CD∥AB(内错角相等,两直线平行).
【点睛】
本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.
5、(1)40°;(2)见解析;(3)70°
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
6、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
【分析】
同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
【详解】
解:直线AB,EF被直线CD所截,
(1)∠1与∠2是一对同位角;
(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
【点睛】
本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
7、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
【分析】
(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
(3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
【详解】
证明:(1)结论为MR∥NP.
如题图1∵AB∥CD,
∴∠EMB=∠END,
∵MR平分∠EMB,NP平分∠EBD,
∴,
∴∠EMR=∠ENP,
∴MR∥BP;
故答案为MR∥BP;
(2)结论为:MR∥NP.
如题图2,∵AB∥CD,
∴∠AMN=∠END,
∵MR平分∠AMN,NP平分∠EBD,
∴
∴∠RMN=∠ENP,
∴MR∥NP;
(3)结论为:MR⊥NP.
如图,设MR,NP交于点Q,过点Q作QG∥AB,
∵AB∥CD,
∴∠BMN+∠END=180°,
∵MR平分∠BMN,NP平分∠EBD,
∴,
∴∠BMR+∠NPD=,
∵GQ∥AB,AB∥CD,
∴GQ∥CD∥AB,
∴∠BMQ=∠GQM,∠GQN=∠PND,
∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
∴MR⊥NP,
【点睛】
本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
8、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
【分析】
由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
【详解】
证明:∵BE平分∠ABC(已知),
∴∠2=∠ABC(角平分线的定义),
同理∠1=∠BCD,
∴∠1+∠2=(∠ABC+∠BCD),
又∵AB∥CD(已知)
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
∴∠1+∠2=90°.
故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
9、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
10、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【分析】
利用平行线的性质定理和判定定理解答即可.
【详解】
解:∵AB∥CD,
∴∠AME=∠CNE.(两直线平行,同位角相等),
∵MP平分∠AME,NQ平分∠CNE,
∴∠1=∠AME,=∠CNE.( 角平分线的定义),
∵∠AME=∠CNE,
∴∠1=∠2.(等量代换),
∵∠1=∠2,
∴MP∥NQ.(同位角相等,两直线平行).
故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【点睛】
此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共27页。试卷主要包含了如图,直线b,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试一课一练,共34页。试卷主要包含了如图,在,直线等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。
