![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12708263/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12708263/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评试卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12708263/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共30页。试卷主要包含了直线,如图,在,如图,能与构成同位角的有,下列说法中正确的有等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把长方形沿EF对折,若,则的度数为( )A. B. C. D.2、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )A.55° B.125° C.115° D.65°3、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )A.100° B.140° C.160° D.105°4、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )A.140° B.100° C.80° D.40°5、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°6、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠57、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A.千米 B.千米 C.千米 D.千米8、如图,能与构成同位角的有( )A.4个 B.3个 C.2个 D.1个9、下列说法中正确的有( )①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B.2个 C.3个 D.4个10、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图①,已知,,的交点为,现作如下操作:第一次操作,分别作和的平分线,交点为;第二次操作,分别作和的平分线,交点为;第三次操作,分别作和的平分线,交点为……第次操作,分别作和的平分线,交点为.如图②,若,则的度数是__________.2、如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AEC=_____度.3、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.4、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.5、如图所示,用数字表示的8个角中,若同位角有a对,内错角有b对,同旁内角有c对,则ab﹣c=___.三、解答题(10小题,每小题5分,共计50分)1、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.2、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.3、已知,,三点在同一条直线上,平分,平分.(1)若,如图1,则 ;(2)若,如图2,求的度数;(3)若如图3,求的度数.4、完成下列填空:已知:如图,,,CA平分;求证:.证明:∵(已知)∴________( )∵(已知)∴________( )又∵CA平分(已知)∴________( )∵(已知)∴_____________=30°( )5、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:. 6、按要求画图,并回答问题: 如图,平面内有三个点A,B,C. 根据下列语句画图:(1)画直线AB;(2)射线BC;(3)延长线段AC到点D,使得; (4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);(5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).7、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.证明:∵∠DAF=∠F(已知).∴AD∥BF( ),∴∠D=∠DCF( ).∵∠B=∠D(已知),∴( )=∠DCF(等量代换),∴AB∥DC( ).8、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.9、如图直线,直线与分别和交于点交直线b于点C.(1)若,直接写出 ;(2)若,则点B到直线的距离是 ;(3)在图中直接画出并求出点A到直线的距离.10、如图所示,从标有数字的角中找出:(1)直线CD和AB被直线AC所截构成的内错角.(2)直线CD和AC被直线AD所截构成的同位角.(3)直线AC和AB被直线BC所截构成的同旁内角. -参考答案-一、单选题1、B【分析】根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.【详解】解:根据折叠以及∠1=50°,得∠BFE=∠BFG=(180°﹣∠1)=65°.∵AD∥BC,∴∠AEF=180°﹣∠BFE=115°.故选:B.【点睛】本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.3、B【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70°,射线AC的方向是南偏西30°, 而 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.4、B【分析】根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.【详解】解:∵∠AOE+∠BOE=180°,∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,又∵OE平分∠AOC,∴∠AOE=∠COE=40°,∴∠BOC=∠BOE﹣∠COE=140°﹣40°=100°,故选:B.【点睛】本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.5、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.6、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.7、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8、B【分析】根据同位角的定义判断即可;【详解】如图,与能构成同位角的有:∠1,∠2,∠3.故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.9、A【分析】根据平行线的性质,平行线的判定判断即可.【详解】∵一条直线的平行线有无数条,∴①的说法不正确;∵经过直线外一点有且只有一条直线与已知直线平行,∴②的说法不正确,④的说法正确;∵a∥b,c∥d,无法判定a∥d∴③的说法不正确.只有一个是正确的,故选A.【点睛】本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.10、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.二、填空题1、【分析】先过作,根据,得出,再根据平行线的性质,得出,,进而得到;先根据和的平分线交点为,运用图①的结论,得出;同理可得;根据和的平分线,交点为,得出;据此得到规律,最后求得的度数即可.【详解】解:如图①,过作,,,,,,,由此可得:如图②,和的平分线交点为,,和的平分线交点为,,和的平分线,交点为,,以此类推,,∴,当时,.故答案为:.【点睛】本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2、70【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,再根据平行线性质求出∠AEC的度数即可.【详解】解:∵ABCD, ∴∠C+∠CAB=180°, ∵∠C=40°, ∴∠CAB=180°-40°=140°, ∵AE平分∠CAB, ∴∠EAB=70°, ∵ABCD, ∴∠AEC=∠EAB=70°, 故答案为70.【点睛】本题考查角平分线的定义和平行线的性质,解题的关键是熟练掌握两条平行线被第三条直线所截,同旁内角互补.3、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.4、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.5、9【分析】位于两条被截直线的同侧,截线的同旁的角是同位角,位于两条被截直线的内部,截线的两旁的角是内错角,位于两条被截直线的内部,截线的同旁的角是同旁内角,根据同位角,内错角,同旁内角概念结合图形找出各对角类型的角得出a, b, c的值,然后代入计算即可.【详解】解:同位角有∠1与∠6,2与∠5,∠3与∠7,∠4与∠8,同位角有4对,∴a=4,内错角有∠1与∠4,2与∠7,3与∠5,∠8与∠6,内错角4对,∴b=4,同旁内角有∠1与∠8,∠1与∠7,∠7与∠8,∠2与∠4,∠2与∠3,∠3与∠4,∠3与∠8,同旁内角有7对,∴c=7,∴ab﹣c=4×4-7=16-7=9,故答案为9.【点睛】本题考查同位角,内错角,同旁内角,以及代数式求值,掌握同位角,内错角,同旁内角概念,得出a=4,b=4,c=7是解题关键.三、解答题1、(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,(2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.2、(1);(2)【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1) ∠AOC:∠AOD=3:7, OE平分∠BOD, (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.3、(1)90;(2)90°;(3)90°【分析】(1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;(2)由,则,同(1)即可得出结果;(3)易证,同(1)得,,即可得出结果.【详解】解:(1),,三点在同一条直线上,,,,平分,平分,,,,故答案为:90;(2),,同(1)得:,,;(3),,同(1)得:,,.【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.4、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】由AB与CD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵AB∥CD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.又CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).∵AB∥CD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.5、见解析【分析】由AB∥CD∥EF可得,,,即可证明.【详解】证明:∵AB∥CD(已知)∴(两直线平行,内错角相等) 又 ∵CD∥EF(已知)∴(两直线平行,内错角相等) ∵(已知)∴(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.6、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4【分析】(1)根据直线定义即可画直线AB;(2)根据射线定义即可画直线BC;(3)根据线段定义即可连接AC并延长到点D,使得CD=AC;(4)通过画图、测量,即可得点B到点D的距离.(5)通过画图、测量,即可得点D到直线AB的距离.【详解】解:(1)如图,直线AB即为所求;(2)如图,射线BC即为所求;(3)如图,线段CD即为所画;(4)通过画图、测量,点B到点D的距离约为3.5cm,故答案为:3.5;(5)通过画图、测量,点D到点AB的距离DE约为1.4cm故答案为:1.4【点睛】本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.7、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.8、(1)证明见解析;(2)证明见解析.【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.9、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵,∴,∵,,∴,故答案为:;(2)∵,∴点B到直线AC的距离为线段,故答案为:4;(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,∵,∴为直角三角形, ∴,即,解得:,∴点A到直线BC的距离为.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.10、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4【分析】根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.【详解】解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.【点睛】此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了如图,在等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共32页。试卷主要包含了下列说法中正确的有,如图,∠1与∠2是同位角的是,下列命题中,为真命题的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)