![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试卷(精选含答案)第1页](http://img-preview.51jiaoxi.com/2/3/12708254/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试卷(精选含答案)第2页](http://img-preview.51jiaoxi.com/2/3/12708254/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试卷(精选含答案)第3页](http://img-preview.51jiaoxi.com/2/3/12708254/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共27页。试卷主要包含了如图,不能推出a∥b的条件是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b2、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°3、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A.千米 B.千米 C.千米 D.千米4、下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.5、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°6、如图,AC⊥BC,CD⊥AB,则点C到AB的距离是线段( )的长度A.CD B.AD C.BD D.BC7、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对8、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°9、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).A.同位角相等,两直线平行. B.内错角相等,两直线平行.C.同旁内角互补,两直线平行. D.以上都不对.10、如图,下列给定的条件中,不能判定的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E在AD的延长线上,下列四个条件:①∠3=∠4;②∠C+∠ABC=180°;③∠A=∠CDE;④∠1=∠2,其中能判定AB∥CD的是________.(填序号)2、如图,直线AB与CD被直线AC所截得的内错角是 ___.3、如图,已知AB∥CD,∠1=55°,则∠2的度数为 ___.4、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.5、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.三、解答题(10小题,每小题5分,共计50分)1、如图所示,点、分别在、上,、均与相交,,,求证:.2、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.(1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.3、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.4、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).5、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.6、如图直线,直线与分别和交于点交直线b于点C.(1)若,直接写出 ;(2)若,则点B到直线的距离是 ;(3)在图中直接画出并求出点A到直线的距离.7、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.(1)求∠DOE的度数;(2)若∠EOF是直角,求∠COF的度数.8、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数9、如图,直线交于点,于点,且的度数是的4倍.(1)求的度数;(2)求的度数.10、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)∴GD∥ .( )∴∠2=∠DAC.( )∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)∴AD∥EF.( )∴∠ADC=∠ .( )∵EF⊥BC,(已知)∴∠EFC=90°.( )∴∠ADC=90°.(等量代换) -参考答案-一、单选题1、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”, 用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.2、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.3、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.4、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.5、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.6、A【分析】根据和点到直线的距离的定义即可得出答案.【详解】解:,点到的距离是线段的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.7、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.8、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.9、A【分析】由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A.【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.10、A【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.二、填空题1、②③④【分析】根据平行线的判定定理,逐一判断,即可得到答案.【详解】∵,∴,∴①不符合题意;∵∠C+∠ABC=180°,∴AB∥CD;∴②符合题意;∵∠A=∠CDE,∴AB∥CD;∴③符合题意;∵∠1=∠2,∴AB∥CD.故答案为:②③④.【点睛】本题主要考查平行线的判定定理,掌握平行线的判定定理是解题的关键.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.3、【分析】如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.【详解】解:如图,,,,故答案为:.【点睛】本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.4、平行【分析】根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.【详解】解:∵∠2:∠3=1:5,∴∠2=30°,∴∠1=∠2,∴a∥b,故答案为:平行.【点睛】本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.5、18°度【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.三、解答题1、证明见解析【分析】由,证明,再证,最后根据对顶角相等,可得答案.【详解】证明:∵,∴,∴,又∵,∴,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.2、(1);(2)∠ABC的度数改变,度数为.【分析】(1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;(2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.【详解】(1)如图1,过点作.∵,∴,∴.∵平分平分,,∴.∵,∴,∴.(2)的度数改变.画出的图形如图2,过点作.∵平分,平分,,∴ .∵,∴,∴.∵,∴,∴,∴.【点睛】本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.3、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.4、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.5、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.6、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵,∴,∵,,∴,故答案为:;(2)∵,∴点B到直线AC的距离为线段,故答案为:4;(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,∵,∴为直角三角形, ∴,即,解得:,∴点A到直线BC的距离为.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.7、(1);(2)【分析】(1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;(2)先求解 再利用平角的定义可得答案.【详解】解:(1) ∠AOC:∠AOD=3:7, OE平分∠BOD, (2) 【点睛】本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.8、∠2=115°,∠3=65°,∠4=115°【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.9、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.10、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义【分析】根据平行线的判定与性质以及垂直的定义即可完成填空.【详解】解:如图,∵∠1=∠C,(已知)∴,(同位角相等,两直线平行)∴∠2=∠DAC,(两直线平行,内错角相等)∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°,(等量代换)∴,(同旁内角互补,两直线平行)∴∠ADC=∠EFC,(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,(垂直的定义)∴∠ADC=90°.(等量代换)【点睛】本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.
相关试卷
这是一份初中数学第十三章 相交线 平行线综合与测试习题,共30页。试卷主要包含了直线,下列命题中,为真命题的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练,共31页。试卷主要包含了如图,能与构成同位角的有等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共27页。试卷主要包含了下列说法,直线m外一点P它到直线的上点A等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)