开学活动
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(无超纲带解析)

    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(无超纲带解析)第1页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(无超纲带解析)第2页
    2021-2022学年基础强化沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(无超纲带解析)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共34页。试卷主要包含了直线,如图所示,下列说法错误的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线难点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知直线,相交于O,平分,,则的度数是( )

    A. B. C. D.
    2、如所示各图中,∠1与∠2是对顶角的是( )
    A. B. C. D.
    3、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )

    A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
    4、如图,∠1=∠2,∠3=25°,则∠4等于( )

    A.165° B.155° C.145° D.135°
    5、如图,把长方形沿EF对折,若,则的度数为( )

    A. B. C. D.
    6、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是(  )

    A.38° B.42° C.48° D.52°
    7、下列各图中,∠1与∠2是对顶角的是( )
    A. B.
    C. D.
    8、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )

    A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
    9、如图所示,下列说法错误的是(  )

    A.∠1和∠3是同位角 B.∠1和∠5是同位角
    C.∠1和∠2是同旁内角 D.∠5和∠6是内错角
    10、如图木条a、b、c用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是( )

    A.木条b、c固定不动,木条a绕点B顺时针旋转20°
    B.木条b、c固定不动,木条a绕点B逆时针旋转160°
    C.木条a、c固定不动,木条b绕点E逆时针旋转20°
    D.木条a、c固定不动,木条b绕点E顺时针旋转110°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
    证明:∵(已知),
    ∴(垂直的定义).
    ∴________,
    ∵(已知),
    ∴________(依据1:________),
    ∴(依据2:________).

    2、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;

    3、如图,已知是上一点,平分交于点,,则的度数为_______________.

    4、如图,已知ABCD,,,则____.

    5、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)

    (1)当t=3时,求∠AOB的度数;
    (2)在运动过程中,当∠AOB达到60°时,求t的值;
    (3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
    2、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.

    (1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
    (2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
    (3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
    3、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.

    4、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
    解:∵AEBF,
    ∴∠EAB= .( )
    ∵AC⊥AE,BD⊥BF,
    ∴∠EAC=90°,∠FBD=90°.
    ∴∠EAC=∠FBD( )
    ∴∠EAB﹣ =∠FBG﹣ ,
    即∠1=∠2.
    ∴ ( ).

    5、已知,,三点在同一条直线上,平分,平分.

    (1)若,如图1,则 ;
    (2)若,如图2,求的度数;
    (3)若如图3,求的度数.
    6、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
    (1)过点M画BC的平行线MN交AB于点N;
    (2)过点D画BC的垂线DE,交AB于点E;
    (3)点E到直线BC的距离是线段    的长度.

    7、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.

    8、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
    (1)如图①,若∠BEF=130°,则∠FGC=   度;
    (2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
    (3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC=   度.

    解:如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(    )
    又∵EM∥FG
    ∴∠FGC=∠EMC(    )
    ∠EFG+∠FEM=180°(    )
    即∠FGC=(    )(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(    )
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=   
    即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
    9、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.

    (1)如图1,若,试说明;
    (2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
    ①,当t为何值时,直线OE平分;
    ②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
    10、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.


    -参考答案-
    一、单选题
    1、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    2、B
    【分析】
    根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
    【详解】
    解:A.∠1与∠2没有公共顶点,不是对顶角;
    B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
    C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
    D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
    故选:B.
    【点睛】
    本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
    3、D
    【分析】
    由,证明,再利用角的和差求解 从而可得答案.
    【详解】
    解:如图,标注字母, ,

    ∴,

    此时的航行方向为北偏东30°,
    故选:D.
    【点睛】
    本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
    4、B
    【分析】
    设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
    【详解】
    解:设∠4的补角为,如下图所示:

    ∠1=∠2,



    故选:B.
    【点睛】
    本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
    5、B
    【分析】
    根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.
    【详解】
    解:根据折叠以及∠1=50°,得
    ∠BFE=∠BFG=(180°﹣∠1)=65°.
    ∵AD∥BC,
    ∴∠AEF=180°﹣∠BFE=115°.
    故选:B.
    【点睛】
    本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    6、A
    【分析】
    利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
    【详解】
    解:∵AB⊥AC,∠1=52°,
    ∴∠B=90°﹣∠1
    =90°﹣52°
    =38°
    ∵a∥b,
    ∴∠2=∠B=38°.
    故选:A.
    【点睛】
    本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
    7、C
    【分析】
    根据对顶角的定义作出判断即可.
    【详解】
    解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
    故选C.
    【点睛】
    本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
    8、D
    【分析】
    根据平行线的判定与性质、对顶角相等逐项判断即可.
    【详解】
    解:∵∠1=∠2,
    ∴AB∥CD,故A正确,不符合题意;
    ∴∠4=∠5,故C正确,不符合题意;
    ∵∠EFB与∠3是对顶角,
    ∴∠EFB=∠3,故B正确,
    无法判断∠3=∠5,故D错误,符合题意,
    故选:D.
    【点睛】
    本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
    9、B
    【分析】
    根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.
    【详解】
    解:A、∠1和∠3是同位角,故此选项不符合题意;
    B、∠1和∠5不存在直接联系,故此选项符合题意;
    C、∠1和∠2是同旁内角,故此选项不符合题意;
    D、∠1和∠6是内错角,故此选项不符合题意;
    故选B.
    【点睛】
    本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.
    10、D
    【分析】
    根据同位角相等,两直线平行,逐项判断即可.
    【详解】
    解:A、木条b、c固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    B、木条b、c固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    C、木条a、c固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    D、木条a、c固定不动,木条b绕点E顺时针旋转110°,木条b、c重合,则 ,故本选项错误,符合题意.
    故选:D.
    【点睛】
    本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.
    二、填空题
    1、 同角的余角相等 内错角相等,两直线平行
    【分析】
    根据垂直的定义及平行线的判定定理即可填空.
    【详解】
    ∵(已知),
    ∴(垂直的定义).
    ∴,
    ∵(已知),
    ∴(同角的余角相等),
    ∴(内错角相等,两直线平行).
    故答案为:;;同角的余角相等;内错角相等,两直线平行.
    【点睛】
    此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
    2、3.1
    【分析】
    根据点到直线,垂线段最短,即可求解.
    【详解】
    解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.
    故答案为:3.1
    【点睛】
    本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.
    3、
    【分析】
    根据平行线的性质可得,根据平分线的性质可得,进而即可求得的度数.
    【详解】


    平分,,


    故答案为:
    【点睛】
    本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.
    4、95°
    【分析】
    过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.
    【详解】
    解:如图,过点E作EF∥AB,

    ∵EF//AB,
    ∴∠BEF+∠ABE=180°,
    ∵∠ABE=120°,
    ∴∠BEF=180°-∠ABE=180°-120°=60°,
    ∵EF//AB,AB//CD,
    ∴EF//CD,
    ∴∠FEC=∠DCE,
    ∵∠DCE=35°,
    ∴∠FEC=35°,
    ∴∠BEC=∠BEF+∠FEC=60°+35°=95°.
    故答案为:95°
    【点睛】
    本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
    5、50
    【分析】
    先求出∠BOD,根据平角的性质即可求出∠AOC.
    【详解】
    ∵OE是∠DOB的角平分线,当∠DOE=20°
    ∴∠BOD=2∠DOE=40°
    ∵OC⊥OD,
    ∴∠AOC=180°-90°-∠BOD=50°
    故答案为:50.
    【点睛】
    此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质.
    三、解答题
    1、(1)150°;(2)12或24;(3)存在,9秒、27秒
    【分析】
    (1)根据∠AOB=180°−∠AOM−∠BON计算即可.
    (2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
    (3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
    【详解】
    解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
    (2)当重合时,
    解得:
    当0≤t≤18时:


    4t+6t=120
    解得:
    当18≤t≤30时:则
    4t+6t=180+60,
    解得 t=24,
    答:当∠AOB达到60°时,t的值为6或24秒.
    (3) 当0≤t≤18时,由

    180−4t−6t=90,
    解得t=9,
    当18≤t≤30时,同理可得:
    4t+6t=180+90
    解得t=27.
    所以大于的答案不予讨论,
    答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
    【点睛】
    本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
    2、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
    【分析】
    (1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
    (2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
    (3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
    【详解】
    证明:(1)结论为MR∥NP.
    如题图1∵AB∥CD,
    ∴∠EMB=∠END,
    ∵MR平分∠EMB,NP平分∠EBD,
    ∴,
    ∴∠EMR=∠ENP,
    ∴MR∥BP;
    故答案为MR∥BP;
    (2)结论为:MR∥NP.
    如题图2,∵AB∥CD,
    ∴∠AMN=∠END,
    ∵MR平分∠AMN,NP平分∠EBD,

    ∴∠RMN=∠ENP,
    ∴MR∥NP;
    (3)结论为:MR⊥NP.
    如图,设MR,NP交于点Q,过点Q作QG∥AB,

    ∵AB∥CD,
    ∴∠BMN+∠END=180°,
    ∵MR平分∠BMN,NP平分∠EBD,
    ∴,
    ∴∠BMR+∠NPD=,
    ∵GQ∥AB,AB∥CD,
    ∴GQ∥CD∥AB,
    ∴∠BMQ=∠GQM,∠GQN=∠PND,
    ∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
    ∴MR⊥NP,
    【点睛】
    本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
    3、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
    4、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
    【分析】
    由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
    【详解】
    ∵AE∥BF,
    ∴∠EAB=∠FBG(两直线平行,同位角相等).
    ∵AC⊥AE,BD⊥BF,
    ∴∠EAC=90°,∠FBD=90°.
    ∴∠EAC=∠FBD(等量代换),
    ∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
    即∠1=∠2.
    ∴AC∥BD(同位角相等,两直线平行).
    故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
    【点睛】
    本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
    5、(1)90;(2)90°;(3)90°
    【分析】
    (1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
    (2)由,则,同(1)即可得出结果;
    (3)易证,同(1)得,,即可得出结果.
    【详解】
    解:(1),,三点在同一条直线上,



    平分,平分,
    ,,

    故答案为:90;
    (2),

    同(1)得:,,

    (3),

    同(1)得:,,

    【点睛】
    本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
    6、(1)见解析;(2)见解析;(3)DE
    【分析】
    (1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
    (2)根据垂线的定义作图即可;
    (3)根据点到直线的距离的定义求解即可.
    【详解】
    解:(1)如图所示,点N即为所求;

    (2)如图所示,点E即为所求;

    (3)由题意可知:点E到直线BC的距离是线段DE的长度,
    故答案为:DE.
    【点睛】
    本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
    7、100°
    【分析】
    由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.
    【详解】
    解:∵OA⊥OB,
    ∴∠AOB=90°,
    ∵∠AOD:∠BOD=7:2,
    ∴∠BOD=∠AOB=20°,
    ∴∠BOE=180°﹣∠BOD=160°.
    ∵OC平分∠BOE,
    ∴∠BOC=∠BOE=80°,
    ∴∠COD=∠BOC+∠BOD=80°+20°=100°.
    【点睛】
    本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.
    8、(1)40°;(2)见解析;(3)70°
    【分析】
    (1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
    (2)根据题目补充理由和相关结论即可;
    (3)类似(2)中的方法求解即可.
    【详解】
    解:(1)过点F作FN∥AB,
    ∵FN∥AB,∠FEB=130°,
    ∴∠EFN+∠FEB=180°,
    ∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
    ∵∠EFG=90°,
    ∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
    ∵AB∥CD,
    ∴FN∥CD,
    ∴∠FGC=∠NFG=40°.
    故答案为:40°;

    (2)如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(两直线平行,内错角相等)
    又∵EM∥FG
    ∴∠FGC=∠EMC(两直线平行,同位角相等)
    ∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
    即∠FGC=(∠BEM)(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=90°
    故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
    (3)过点E作EH∥FG,交CD于点H.
    ∵AB∥CD
    ∴∠BEH=∠EHC
    又∵EM∥FG
    ∴∠FGC=∠EHC
    ∠EFG+∠FEH=180°
    即∠FGC=∠BEH
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
    又∵∠EFG=110°
    ∴∠FEH=70°
    ∴∠FEB﹣∠FGC=70°
    故答案为:70°.

    【点睛】
    本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
    9、(1)见解析;(2)①或;②
    【分析】
    (1)根据垂直的性质即可求解;
    (2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
    ②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∴.
    (2)①∵OB平分,,
    ∴.
    情况1:当OE平分时,
    则旋转之后,
    ∴OB旋转的角度为,
    ∴,.
    情况2:当OF平分时,同理可得,OB旋转的角度为,
    ∴,.
    综上所述,或.
    ②∵,
    ∴OP在内部,如图所示,

    由题意知,,
    ∴,∵OM平分,
    ∴,
    ∴,
    ∴.
    【点睛】
    此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
    10、60°
    【分析】
    由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
    【详解】
    解:CD⊥AB于D,FE⊥AB于E,
    ∴,
    ∴∠2=∠4,
    又∵∠1=∠2,
    ∴∠1=∠4,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共30页。试卷主要包含了下列说法中正确的个数是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共30页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题,共29页。试卷主要包含了如图,下列条件中能判断直线的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map