初中沪教版 (五四制)第十二章 实数综合与测试当堂检测题
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平方根和立方根都等于它本身的数是( )
A.±1B.1C.0D.﹣1
2、若,那么( )
A.1B.-1C.-3D.-5
3、的相反数是( )
A.B.C.D.
4、下列整数中,与-1最接近的是( )
A.2B.3C.4D.5
5、三个实数,2,之间的大小关系( )
A.>>2B.>2>C.2>>D.<2<
6、实数2,0,﹣3,﹣中,最小的数是( )
A.﹣3B.﹣C.2D.0
7、若一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1B.0和1C.0D.非负数
8、下列各组数中相等的是( )
A.和3.14B.25%和C.和0.625D.13.2%和1.32
9、实数﹣2的倒数是( )
A.2B.﹣2C.D.﹣
10、下列实数比较大小正确的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是一个“数值转换机”的示意图,若输入的x的值为﹣2,输出的值为﹣,则输入的y值为 _____.
2、在实数范围内分解因式:a2﹣3b2=_____.
3、计算: = ______.
4、如果一个数的平方等于16,那么这个数是________.
5、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.
三、解答题(10小题,每小题5分,共计50分)
1、计算:.
2、计算
(1)
(2)
3、计算:
(1)
(2)
4、解方程,求x的值.
(1)
(2)
5、求下列各数的算术平方根:
(1)0.64 (2)
6、运算,满足
(1)求的值;
(2)求的值.
7、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
8、观察下列等式:
第1个等式:12=13;
第2个等式:(1+2)2=13+23;
第3个等式:(1+2+3)2=13+23+33;
第4个等式:(1+2+3+4)2=13+23+33+43;
……
按照以上规律,解决下列问题:
(1)写出第5个等式:__________________;
(2)写出第n(n为正整数)个等式:__________________(用含n的等式表示);
(3)利用上述规律求值:.
9、计算:
(1);
(2)﹣16÷(﹣2)2.
10、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
-参考答案-
一、单选题
1、C
【分析】
根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.
【详解】
解:平方根是本身的数有0,立方根是本身的数有1,-1,0;
∴平方根和立方根都是本身的数是0.
故选C.
【点睛】
本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b≥0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根.
2、D
【分析】
由非负数之和为,可得且,解方程求得,,代入问题得解.
【详解】
解: ,
且,
解得,,
,
故选:D
【点睛】
本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.
3、B
【分析】
直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.
【详解】
解:的相反数是;
故选:B.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.
4、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
5、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
6、A
【分析】
根据实数的性质即可判断大小.
【详解】
解:∵﹣3<﹣<0<2
故选A.
【点睛】
此题主要考查实数的大小比较,解题的关键是熟知实数的性质.
7、B
【分析】
根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.
【详解】
解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,
∴一个数的算术平方根与它的立方根的值相同的是0和1,
故选B.
【点睛】
主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.
8、B
【分析】
是一个无限不循环小数,约等于3.142,3.142>3.14,即>3.14;=1÷4=0.25,把0.25的小数点向右移动两位添上百分号就是25%;即25%=;=3÷8=0.375,0.375<0.625,即<0.625;把13.2%小数点向左移动两位去掉百分号就是0.132,0.132<1.32,即13.2%<1.32.
【详解】
解:A 、≈3.142,3.142>3.14,即>3.14;
B 、=1÷4=0.25=25%=;
C 、=3÷8=0.375,0.375<0.625,即<0.625;
D 、13.2%=0.132,0.132<1.32,即13.2%<1.32.
故选:B.
【点睛】
此题主要是考查小数、分数、百分数的互化及圆周率的限值.小数、分数、百分数、无限小数(循环小数)的大小比较,通常都化成保留一定位数的小数,再根据小数的大小比较方法进行比较,这样可以省去通分的麻烦.
9、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
10、D
【分析】
根据有理数比较大小的法则对各选项进行比较即可.
【详解】
解:A、1>-4,故本选项错误;
B、-1000<-0.001,故本选项错误;
C、,故本选项错误;
D、,故本选项正确;
故选:D.
【点睛】
本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.
二、填空题
1、-3
【分析】
利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值.
【详解】
解:由题意得:
[(﹣2)2+y3]÷2=﹣.
∴4+y3=﹣23.
∴y3=﹣27.
∵(﹣3)3=﹣27,
∴y=﹣3.
故答案为:﹣3.
【点睛】
本题主要考查了根据程序框图列式计算,立方根的性质,准确计算是解题的关键.
2、(a+)(a﹣)a﹣)(a+)
【分析】
根据平方差公式因式分解,运用2次,注意分解要彻底
【详解】
a2﹣3b2
=a2﹣()2
=(a+)(a﹣).
【点睛】
本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.
3、##
【分析】
根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算
【详解】
解:
故答案为:
【点睛】
本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.
4、
【分析】
根据平方根的定义进行解答即可.
【详解】
解:∵
∴如果一个数的平方等于16,那么这个数是
故答案为:
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
5、3
【分析】
无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.
【详解】
在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,
无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.
故答案为:3.
【点睛】
本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.
三、解答题
1、2
【分析】
先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.
2、(1);(2)
【分析】
(1)利用完全平方公式,平方差公式展开,合并同类项即可;
(2)根据幂的意义,算术平方根,立方根的定义计算.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.
3、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
4、(1)或 ;(2)x=−
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)把x−1可做一个整体求出其立方根,进而求出x的值.
【详解】
解:(1),
,
或 ;
(2)8(x−1)3=−27,
(x−1)3=−,
x−1=−,
x=−.
【点睛】
本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.
5、 (1) 0.8; (2)
【分析】
根据算术平方根的定义求解即可.
【详解】
解:(1)因为0.82=0.64,
所以0.64的算术平方根是0.8,即=0.8.
(2)因为,
所以的算术平方根是,即.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
6、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
7、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
8、
(1)(1+2+3+4+5)2=13+23+33+43+53;
(2)(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;
(3)265
【分析】
(1)根据前几个等式的变化规律解答即可;
(2)根据前几个等式的变化规律写出第n个等式即可;
(3)根据变化规律和平方差公式进行计算即可.
(1)
解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53,
故答案为:(1+2+3+4+5)2=13+23+33+43+53;
(2)
解:根据题意,第n个等式为(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3,
故答案为:(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3;
(3)
解:由(2)中(1+2+3+4+5+…+n)2=13+23+33+43+53+…+n3知,
(1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,
(1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,
①-②得:
(1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203,
∴
=(1+2+3+4+5+…+20+1+2+3+4+5+…+10)
=265.
【点睛】
本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.
9、(1)(2)
【分析】
(1)根据有理数的混合运算进行计算即可;
(2)先根据求一个数的立方根求得为,进而根据有理数的混合运算进行计算即可
【详解】
(1)原式
(2)原式
【点睛】
本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.
10、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习题,共21页。试卷主要包含了下列说法中错误的是,下列说法,的相反数是,下列各数中,最小的数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共19页。试卷主要包含了下列说法正确的是,下列等式正确的是,下列说法中错误的是,下列实数比较大小正确的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试,共24页。试卷主要包含了下列说法正确的是,若 ,则,10的算术平方根是,下列各数是无理数的是,的算术平方根是,若关于x的方程等内容,欢迎下载使用。