|试卷下载
搜索
    上传资料 赚现金
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数专题练习试题(名师精选)
    立即下载
    加入资料篮
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数专题练习试题(名师精选)01
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数专题练习试题(名师精选)02
    2022年强化训练沪教版(上海)七年级数学第二学期第十二章实数专题练习试题(名师精选)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十二章 实数综合与测试测试题

    展开
    这是一份2021学年第十二章 实数综合与测试测试题,共22页。试卷主要包含了下列各数中,最小的数是,的算术平方根是,3的算术平方根为,若,那么,若,则的值为,对于两个有理数等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数专题练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(   

    A.是最小的正无理数 B.绝对值最小的实数不存在

    C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应

    2、实数在哪两个连续整数之间(   

    A.3与4 B.4与5 C.5与6 D.12与13

    3、的值等于(   

    A. B.-2 C. D.2

    4、下列各数中,最小的数是(   

    A.0 B. C. D.﹣3

    5、的算术平方根是(   

    A.2 B. C. D.

    6、3的算术平方根为(   

    A. B.9 C.±9 D.±

    7、若,那么   

    A.1 B.-1 C.-3 D.-5

    8、若,则的值为(  

    A. B. C. D.

    9、对于两个有理数,定义一种新的运算:,若,则的值为(  

    A. B. C. D.

    10、若 ,则   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________

    2、规定了一种新运算:,计算:(3*4)*5=___.

    3、已知,则|x﹣3|+|x﹣1|=___.

    4、化简=_______,=_______.

    5、若实数ab互为相反数,cd互为倒数,e的整数部分,f的小数部分,则代数式的值是 ___.

    三、解答题(10小题,每小题5分,共计50分)

    1、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为

    参考小燕同学的做法,解答下列问题:

    (1)写出的小数部分为________;

    (2)已知的小数部分分别为ab,求a2+2abb2的值;

    (3)如果,其中x是整数,0<y<1,那么=________

    (4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).

    2、(1)计算:

    (2)求的值:

    3、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.

    (1)a     b     

    (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      

    (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍?

    4、计算:

    5、阅读下列材料:

    的整数部分为3,小数部分为

    请你观察上述的规律后试解下面的问题:如果的整数部分为的小数部分为,求的值.

    6、计算题:

    (1)

    (2)

    7、计算:

    8、解方程,求x的值.

    (1)                    

    (2)

    9、直接写出结果:

    (1)____________;

    (2)____________;

    (3)的立方根=____________;

    (4)若x2=(﹣7)2,则x=____________.

    10、计算:

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    利用正无理数,绝对值,以及数轴的性质判断即可.

    【详解】

    解:、不存在最小的正无理数,不符合题意;

    、绝对值最小的实数是0,不符合题意;

    、两个无理数的和不一定是无理数,例如:,符合题意;

    、实数与数轴上的点一一对应,不符合题意.

    故选:C.

    【点睛】

    本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.

    2、B

    【分析】

    估算即可得到结果.

    【详解】

    解:

    故选:B.

    【点睛】

    本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.

    3、D

    【分析】

    由于表示4的算术平方根,由此即可得到结果.

    【详解】

    解:∵4的算术平方根为2,

    的值为2.

    故选D.

    【点睛】

    此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.

    4、C

    【分析】

    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.

    【详解】

    解:

    所给的各数中,最小的数是

    故选:C.

    【点睛】

    本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

    5、A

    【分析】

    根据算术平方根的定义即可求出结果.

    【详解】

    解:=4,4的算术平方根是2.

    故选:A

    【点睛】

    此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.

    6、A

    【分析】

    利用算术平方根的定义求解即可.

    【详解】

    3的算术平方根是

    故选:A.

    【点睛】

    本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.

    7、D

    【分析】

    由非负数之和为,可得,解方程求得,代入问题得解.

    【详解】

    解:

    解得,

    故选:D

    【点睛】

    本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.

    8、C

    【分析】

    化简后利用平方根的定义求解即可.

    【详解】

    解:∵

    x2-9=55,

    x2=64,

    x=±8,

    故选C.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    9、D

    【分析】

    根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.

    【详解】

    解:

    解得:

    故选D

    【点睛】

    本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.

    10、B

    【分析】

    先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.

    【详解】

    解:

    (舍去),

    故选:B.

    【点睛】

    本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.

    二、填空题

    1、±6##6或-6    ±7   

    【分析】

    根据平方根的定义求解即可.

    【详解】

    解:∵(±6)2=36,

    ∴当x2=36时,则x=±6;

    ∵(-a)2=(7)2

    a2=49,

    ∵(±7)2=49,

    a=±7;

    故答案为:±6;±7.

    【点睛】

    本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.

    2、

    【分析】

    根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.

    【详解】

    解:(3*4)*5=

    故答案为

    【点睛】

    本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.

    3、2

    【分析】

    得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.

    【详解】

    解:∵,1<<2,2<<3,

    x-3<0,x-1>0,

    ∴|x﹣3|+|x-1|

    =3-x+(x-1)

    =3-x+x-1

    =2.

    故答案为:2.

    【点睛】

    本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.

    4、2    3   

    【分析】

    由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.

    【详解】

    解:=2,=3.

    故答案为:2,3.

    【点睛】

    本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.

    5、4-

    【分析】

    根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.

    【详解】

    解:∵实数ab互为相反数,

    a+b=0,

    cd互为倒数,

    cd=1,

    ∵3<<4,

    的整数部分为3,e=3,

    ∵2<<3,

    的小数部分为-2,即f=-2,

    =0+1-3+-2=

    故答案为:4-

    【点睛】

    本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.

    三、解答题

    1、(1);(2)1;(3);(4)

    【分析】

    (1)由题意易得,则有的整数部分为3,然后问题可求解;

    (2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;

    (3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;

    (4)根据题意可直接进行求解.

    【详解】

    解:(1)∵

    的整数部分为3,

    的小数部分为

    故答案为

    (2)∵

    的小数部分分别为ab

    (3)由可知

    的小数部分为

    x是整数,0<y<1,

    故答案为

    (4)∵无理数m为正整数)的整数部分为n

    的小数部分为

    的小数部分即为的小数部分加1,为

    故答案为

    【点睛】

    本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.

    2、(1)0;(2)

    【分析】

    (1)根据立方根和平方根的性质化简,再计算加法,即可求解;

    (2)先将系数化为1,再利用平方根的性质,即可求解.

    【详解】

    解:(1)

    原式=-2+2

      

    (2)

    解得:

    【点睛】

    本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.

    3、(1)﹣3,9;(2)≥9,12;(3)秒或秒.

    【分析】

    (1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;

    (2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;

    (3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.

    【详解】

    解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,

    ∴|a+3|=0,(b﹣9)2=0,

    a=﹣3,b=9,

    故答案为:﹣3,9.

    (2)∵a=﹣3,b=9,

    ∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,

    x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;

    当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,

    ∵﹣12≤2x﹣6<12,

    ∴﹣12≤|x+3|﹣|x﹣9|<12;

    x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,

    综上所述,|x+3|﹣|x﹣9|的最大值为12,

    故答案为:≥9,12.

    (3)∵点C表示的数是1,点B表示的数是9,

    BC两点之间的距离是9﹣1=8,

    当点Q与点C重合时,则2t=8,

    解得t=4,

    当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t

    根据题意得9﹣2t﹣(﹣3﹣t)=2×2t

    解得t

    当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t

    ∵1+(2t﹣8)=2t﹣7,

    ∴点Q表示的数是2t﹣7,

    根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),

    解得t

    综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.

    【点睛】

    本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.

    4、2﹣π

    【分析】

    根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.

    【详解】

    解:

    =3﹣(π﹣)+(﹣1)﹣

    =3﹣π+﹣1﹣

    =2﹣π.

    【点睛】

    本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.

    5、a+b的值为25+

    【分析】

    由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.

    【详解】

    解:∵9π≈28.26,

    a=28,

    ∵27<28<64,

    ∴3<<4,

    b=-3,

    a+b=28+-3=25+

    a+b的值为25+

    【点睛】

    本题主要考查了估算无理数的大小,根据题意估算出ab的值是解答此题的关键.

    6、

    (1)

    (2)

    【分析】

    (1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;

    (2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.

    (1)

    解:原式=

    (2)

    解:原式=

    【点睛】

    本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.

    7、

    【分析】

    先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.

    【详解】

    解:原式=1-8+4+

    =

    【点睛】

    本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.

    8、(1) ;(2)x=−

    【分析】

    (1)方程变形后,利用平方根定义开方即可求出解;

    (2)把x−1可做一个整体求出其立方根,进而求出x的值.

    【详解】

    解:(1)

    (2)8(x−1)3=−27,

    x−1)3=−

    x−1=−

    x=−

    【点睛】

    本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.

    9、(1)8;(2)0;(3)2;(4)

    【分析】

    (1)根据算术平方根的计算法则求解即可;

    (2)根据算术平方根的计算法则求解即可;

    (3)根据立方根的求解方法求解即可;

    (4)根据求平方根的方法解方程即可.

    【详解】

    解:(1)

    故答案为:8;

    (2)

    故答案为:0;

    (3)∵

    的立方根是2,

    故答案为:2;

    (4)∵x2=(﹣7)2

    x2=49,

    x=±7.

    故答案为:±7.

    【点睛】

    本题主要考查了实数的运算,立方根,算术平方根,利用平方根解方程等等,熟知相关计算法则是解题的关键.

    10、1

    【分析】

    分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.

    【详解】

    解:

    【点睛】

    本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共21页。试卷主要包含了下列运算正确的是,下列各数是无理数的是,在下列各数,若,则的值为,100的算术平方根是,下列各式中,化简结果正确的是等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试同步练习题: 这是一份数学七年级下册第十二章 实数综合与测试同步练习题,共20页。试卷主要包含了下列四个数中,最小的数是,的算术平方根是,下列说法正确的是,a为有理数,定义运算符号▽等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共20页。试卷主要包含了下列运算正确的是,若,则的值为,观察下列算式,16的平方根是,下列各式中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map