搜索
    上传资料 赚现金
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合训练试题(名师精选)
    立即下载
    加入资料篮
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合训练试题(名师精选)01
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合训练试题(名师精选)02
    2022年最新沪教版(上海)七年级数学第二学期第十二章实数综合训练试题(名师精选)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共21页。试卷主要包含了若,则整数a的值不可能为,4的平方根是,下列语句正确的是,下列各式正确的是.,下列各式中正确的是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数综合训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、一个正数的两个平方根分别是2a,则a的值为(   

    A.1 B.﹣1 C.2 D.﹣2

    2、下列说法正确的是(  )

    A.是分数

    B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数

    C.﹣3x2y+4x﹣1是三次三项式,常数项是1

    D.单项式﹣的次数是2,系数为﹣

    3、平方根和立方根都等于它本身的数是(   

    A.±1 B.1 C.0 D.﹣1

    4、若,则整数a的值不可能为(   

    A.2 B.3 C.4 D.5

    5、4的平方根是(  )

    A.2 B.﹣2 C.±2 D.没有平方根

    6、下列语句正确的是(  )

    A.8的立方根是2 B.﹣3是27的立方根

    C.的立方根是± D.(﹣1)2的立方根是﹣1

    7、下列各式正确的是(    ).

    A. B.

    C. D.

    8、下列各式中正确的是(   

    A. B. C. D.

    9、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(     

    A.2个 B.3个 C.4个 D.5个

    10、下列等式正确的是(   )

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、的算术平方根是________,的平方根是__________,-8的立方根是_________,

    2、计算____________;

    3、用“*”定义一种新运算:对于任意有理数ab,规定a*bab2+2a,则3*(-2)=_____________.

    4、若|2y+1|=0,则xy2的值是_____.

    5、已知两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:

    (1)________;(2)________ ;(3)________

    (4)________;(5)________;(6)________

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    (1)

    (2)

    2、阅读下列材料:

    根据你观察到的规律,解决下列问题:

    (1)写出①组中的第5个等式;

    (2)写出②组的第n个等式,并证明;

    (3)计算:

    3、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    4、计算:

    5、求下列各数的算术平方根:

    (1)0.64            (2)

    6、计算:

    7、先化简:,再从中选取一个合适的整数代入求值.

    8、求下列各式的值:

    (1)

    (2)

    (3)

    9、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?

    10、对于一个三位自然数m,若m的百位数字等于两个一位正整数ab的和m的个位数字等于两个一位正整数ab的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,所以723是“和差数”,即

    (1)填空:______.

    (2)请判断311是否是“和差数”?并说明理由;

    (3)若一个三位自然数xy是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据正数有两个平方根,且互为相反数,即可求解.

    【详解】

    解:根据题意得:

    解得:

    故选:D

    【点睛】

    本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.

    2、D

    【分析】

    根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.

    【详解】

    解:A、是无限不循环小数,不是分数,故此选项不符合题意;

    B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;

    C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;

    D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;

    故选D.

    【点睛】

    本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.

    3、C

    【分析】

    根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.

    【详解】

    解:平方根是本身的数有0,立方根是本身的数有1,-1,0;

    ∴平方根和立方根都是本身的数是0.

    故选C.

    【点睛】

    本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数abb≥0),满足,那么a就叫做b的平方根;如果有两个数cd满足,那么c就叫做d的立方根.

    4、D

    【分析】

    首先确定的范围,然后求出整式a可能的值,判断求解即可.

    【详解】

    解:∵,即,即

    又∵

    ∴整数a可能的值为:2,3,4,

    ∴整数a的值不可能为5,

    故选:D.

    【点睛】

    此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.

    5、C

    【分析】

    根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.

    【详解】

    解:4的平方根,

    即:

    故选:C.

    【点睛】

    题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.

    6、A

    【分析】

    利用立方根的运算法则,进行判断分析即可.

    【详解】

    解:A、8的立方根是2,故A正确.

    B、3是27的立方根,故B错误.

    C、的立方根是,故C错误.

    D、(﹣1)2的立方根是1,故D错误.

    故选:A.

    【点睛】

    本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.

    7、D

    【分析】

    一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做的立方根;据此可得结论.

    【详解】

    解:A、,原式错误,不符合题意;

    B、,原式错误,不符合题意;

    C、,原式错误,不符合题意;

    D、,原式正确,符合题意;

    故选:D.

    【点睛】

    本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.

    8、D

    【分析】

    由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.

    【详解】

    解:故A不符合题意;

    故B不符合题意;

    没有意义,故C不符合题意;

    ,运算正确,故D符合题意;

    故选D

    【点睛】

    本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.

    9、C

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=1,=2,,3,

    ∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.

    故选:C.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    10、C

    【分析】

    根据算术平方根的定义和性质,立方根的定义逐项分析判断即可

    【详解】

    A. ,故该选项不正确,不符合题意;

    B. 无意义,故该选项不正确,不符合题意;   

    C. ,故该选项正确,符合题意;

    D. ,故该选项不正确,不符合题意;

    故选C

    【点睛】

    本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).

    二、填空题

    1、5    ±3    -2   

    【分析】

    根据算术平方根、平方根、立方根的定义即可求解.

    【详解】

    解:=25

    算术平方根是5

    =9,

    的平方根是±3

    -8的立方根是-2

    故答案为:5;±3;-2.

    【点睛】

    此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.

    2、-3

    【分析】

    根据立方根、算术平方根可直接进行求解.

    【详解】

    解:原式=

    故答案为-3.

    【点睛】

    本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.

    3、18

    【分析】

    根据a*bab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.

    【详解】

    解:∵a*bab2+2a

    ∴3*(−2),

    =3×(−2)2+2×3,

    =3×4+6,

    =12+6,

    =18.

    故答案为:18.

    【点睛】

    此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

    4、

    【分析】

    先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.

    【详解】

    解:

    解得

    故答案为:

    【点睛】

    本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.

    5、<                       

    【分析】

    根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.

    【详解】

    解: ∵由数轴可知:b>0,a<0,|a|>|b|,

    ∴(1)a<b,(2)|a|>|b|,(3)a+b<0,

    (4)ba>0,(5)a+b>ab,(6)

    故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.

    【点睛】

    本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.

    三、解答题

    1、(1)5;(2)

    【分析】

    (1)分别求解算术平方根与立方根,再进行加减运算即可;

    (2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.

    【详解】

    解:(1)

    (2)

    【点睛】

    本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.

    2、

    (1)

    (2),证明见解析;

    (3)

    【分析】

    (1)根据前几个等式的变化规律即可求解;

    (2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;

    (3)根据前三组观察出的变化规律求解即可.

    (1)

    解:∵

    ∴第5个等式为

    (2)

    解:∵

    ∴第n个等式为

    证明:右边=

    左边=

    ∵右边=左边,

    (3)

    解:∵===

    =

    =

    =

    =

    =

    【点睛】

    本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.

    3、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    4、1

    【分析】

    分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.

    【详解】

    解:

    【点睛】

    本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.

    5、 (1) 0.8; (2)

    【分析】

    根据算术平方根的定义求解即可.

    【详解】

    解:(1)因为0.82=0.64,

    所以0.64的算术平方根是0.8,即=0.8.

    (2)因为

    所以的算术平方根是,即

    【点睛】

    本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.

    6、

    【分析】

    分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.

    【详解】

    解:原式

    【点睛】

    本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.

    7、∴或933或925或91

    【点睛】

    本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出aby的值是解答的关键.

    7.2x-2,2.

    【分析】

    根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.

    【详解】

    解:原式=

    x取整数,

    x可取2,

    x=2时,原式=2×2-2=2.

    【点睛】

    本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.

    8、(1)6;(2);(3)

    【分析】

    利用立方与开立方互为逆运算进行化简求值.

    【详解】

    解:(1)

    (2)

    (3)

    【点睛】

    本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.

    9、这个长方体的长、宽、高分别为

    【分析】

    根据题意设这个长方体的长、宽、高分别为4x、2xx,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可.

    【详解】

    解:设这个长方体的长、宽、高分别为4x、2xx

    根据题意得:4x•2x=24,

    解得:xx=﹣(舍去).

    则4x=4,2x=2

    所以这个长方体的长、宽、高分别为4cm、2cmcm

    【点睛】

    本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.

    10、

    (1)412

    (2)是,理由见解析

    (3)941或933或925或917

    【分析】

    (1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;

    (2)根据定义即可判断311是“和差数”;

    (3)由题意得到,解得,再结合ab为正整数且,即可得解.

    (1)

    解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.

    故答案为:412;

    (2)

    解:311是“和差数”,

    是“和差数”;

    (3)

    解:∵是整数)

     

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,16的平方根是,下列四个数中,最小的数是,下列等式正确的是.,下列计算正确的是.等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂达标检测题,共21页。试卷主要包含了下列运算正确的是,下列各数是无理数的是,在下列各数,若,则的值为,100的算术平方根是,下列各式中,化简结果正确的是等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试同步练习题: 这是一份数学七年级下册第十二章 实数综合与测试同步练习题,共20页。试卷主要包含了下列四个数中,最小的数是,的算术平方根是,下列说法正确的是,a为有理数,定义运算符号▽等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map