开学活动
搜索
    上传资料 赚现金

    2022年沪教版(上海)七年级数学第二学期第十二章实数专项测评试题(含答案解析)

    2022年沪教版(上海)七年级数学第二学期第十二章实数专项测评试题(含答案解析)第1页
    2022年沪教版(上海)七年级数学第二学期第十二章实数专项测评试题(含答案解析)第2页
    2022年沪教版(上海)七年级数学第二学期第十二章实数专项测评试题(含答案解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练

    展开

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时训练,共1页。试卷主要包含了下列说法正确的是,a为有理数,定义运算符号▽,下列各数中,比小的数是,下列说法中错误的是,的相反数是等内容,欢迎下载使用。
    沪教版(上海)七年级数学第二学期第十二章实数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、三个实数,2,之间的大小关系(  )A.>2 B.>2> C.2> D.<2<2、如果x>1,那么x﹣1xx2的大小关系是(  )A.x﹣1xx2 B.xx﹣1x2 C.x2xx﹣1 D.x2x﹣1x3、下列各数是无理数的是(    A.-3 B. C.2.121121112 D.4、下列说法正确的是(   A.=±2 B.27的立方根是±3 C.9的平方根是3 D.9的平方根是±35、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为(  )A. B.7 C. D.16、下列各数中,比小的数是(     A. B.- C. D.7、下列说法中错误的是(  )A.9的算术平方根是3 B.的平方根是C.27的立方根为 D.平方根等于±1的数是18、的相反数是(    A.﹣ B. C. D.39、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是(    A.6cm B.12cm C.18cm D.24cm10、实数﹣2的倒数是(  )A.2 B.﹣2 C. D.﹣第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、化简=_______,=_______.2、已知:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;….若设250a,则用含a的式子表示250+251+252+…+2100=________.3、下列各数中:12,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.4、在实数范围内因式分解:y2﹣2y﹣1=__________________.5、已知两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:(1)________;(2)________ ;(3)________(4)________;(5)________;(6)________三、解答题(10小题,每小题5分,共计50分)1、解方程,求x的值.(1)                     (2)2、计算(1)(2)3、(1)计算:(2)求式中的x:(x+4)2=81.4、阅读下列材料:根据你观察到的规律,解决下列问题:(1)写出①组中的第5个等式;(2)写出②组的第n个等式,并证明;(3)计算:5、阅读下面的文字,解答问题.现规定:分别用表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以(1)                                    (2)如果,求的立方根.6、计算:7、把下列各数分别填入相应的集合里.,0,,0.1010010001…(每两个1之间依次多一个0)(1)整数集合:{                        …}(2)正数集合:{                        …}(3)无理数集合:{                        …}8、先化简:,再从中选取一个合适的整数代入求值.9、如图,数轴的原点为O,点ABC是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点PQ同时分别从AC出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)点A表示的数为      ,点C表示的数为      (2)求t为何值时,点P与点Q能够重合?(3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.10、计算  -参考答案-一、单选题1、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2<故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键.2、A【分析】根据,即可得到,由此即可得到答案.【详解】解:∵故选A.【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.3、D【分析】根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.【详解】A、-3是整数,属于有理数.B、是分数,属于有理数.C、2.121121112是有限小数,属于有理数.D、是无限不循环小数,属于无理数.故选:D.【点睛】本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.4、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】=2,故A错误;27的立方根是3,故B错误;9的平方根是±3,故C错误;9的平方根是±3,故D正确;故选D.【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的关键.5、A【分析】定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽aa;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.【详解】解:且当时,▽a=a▽(-3)=-3,4+▽(2-5)=4-3=1>-2,a>-2时,▽a=-a▽[4+▽(2-5)]=▽1=-1,故选:A.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.6、A【分析】直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.【详解】解:A. <-3,故A正确;B. ->-3,故B错误;C. >-3,故C错误;D. >-3,故D错误.​​​​​​​故选A.【点睛】此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.7、C【分析】根据平方根,算术平方根,立方根的性质,即可求解.【详解】解:A、9的算术平方根是3,故本选项正确,不符合题意;B、因为 ,4的平方根是 ,故本选项正确,不符合题意;C、27的立方根为3,故本选项错误,符合题意;D、平方根等于±1的数是1,故本选项正确,不符合题意;故选:C【点睛】本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.8、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】解:的相反数是﹣故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.9、D【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3∴小立方体的棱长由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.10、D【分析】根据倒数的定义即可求解.【详解】解:-2的倒数是﹣故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.二、填空题1、2    3    【分析】由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.【详解】解:=2,=3.故答案为:2,3.【点睛】本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.2、2a2a【分析】观察规律列式,代入所求式子即可.【详解】由规律可得:2+22+23+24+…+249=250﹣2,2+22+23+24+…+249+250+251+252+…+2100=2101﹣2,∴250+251+252+…+2100=2101﹣2﹣(250﹣2)=2×2100﹣250=2×250×250﹣250=2a2a故答案为:2a2a【点睛】本题考查了已知式子值求代数式的值,这类题主要是根据已知条件求出一个式子的值,然后把要求的式子化成与已知式子相关的形式,把已知式子整体代入即可求解,找出已知式子的规律是解题的关键.3、2【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,故答案为:2.【点睛】本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.4、(y﹣1+)(y﹣1﹣【分析】变形整式为y2﹣2y+1﹣2,前三项利用完全平方公式,再利用平方差公式因式分解.【详解】解:y2﹣2y﹣1y2﹣2y+1﹣2=(y﹣1)2﹣(2=(y﹣1+)(y﹣1﹣).故答案为:(y﹣1+)(y﹣1﹣).【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键.5、<                        【分析】根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.【详解】解: ∵由数轴可知:b>0,a<0,|a|>|b|,∴(1)a<b,(2)|a|>|b|,(3)a+b<0,(4)ba>0,(5)a+b>ab,(6)故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.【点睛】本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.三、解答题1、(1) ;(2)x=−【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x−1可做一个整体求出其立方根,进而求出x的值.【详解】解:(1)(2)8(x−1)3=−27,x−1)3=−x−1=−x=−【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.2、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)解:(2)解:【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.3、(1);(2)【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x的值.【详解】解:(1)原式(2)由平方根的意义得:【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.4、(1)(2),证明见解析;(3)【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可.(1)解:∵∴第5个等式为(2)解:∵∴第n个等式为证明:右边=左边=∵右边=左边,(3)解:∵========【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.5、(1)1,,3,;(2)2【分析】(1)先估算出的范围,再根据题目规定的表示方法写出答案即可;(2)先估算出的范围,即可求出ab的值,进一步即可求出结果.【详解】(1)∵1<<2,3<<4,∴[]=1,<>=−1,[]=3,<>=−3,故答案为:1,,3,(2)∵2<<3,10<<11,∴<>=a=−2,[]=b=10,的立方根是2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.6、【分析】根据求一个数的算术平方根,负整数指数幂,0次幂进行计算即可【详解】原式=  =.【点睛】本题考查了求一个数的算术平方根,负整数指数幂,0次幂,正确的计算是解题的关键.7、(1)整数集合:;(2)正数集合:;(3)无理数集合:【分析】根据实数分类解题,实数分为有理数与无理数,无限不循环小数和开方不能开尽的数是无理数,整数和分数统称为有理数,整数包含正整数、0、负整数, (1)根据整数的分类即可得;(2)根据正数的分类即可得;(3)根据无理数的分类即可得.【详解】解:+5是正整数,是无理数, 0是整数,-3.14是正分数,是正分数,-12是负整数,是负无理数,是正整数,(每两个1之间依次多一个0)是无理数;故(1)整数集合:(2)正数集合:(3)无理数集合:【点睛】本题考查实数的分类、有理数的分类等知识,掌握相关数的分类是解题关键.8、∴或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出aby的值是解答的关键.7.2x-2,2.【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:原式=x取整数,x可取2,x=2时,原式=2×2-2=2.【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.9、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.【分析】(1)由点B对应的数及线段ABBC的长,可找出点AC对应的数;(2)根据点PQ的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;(3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点OPQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.10、【分析】根据立方根,算术平方根,绝对值的计算法则进行求解即可.【详解】解:【点睛】本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则. 

    相关试卷

    沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共23页。试卷主要包含了的相反数是,4的平方根是,下列各数中,最小的数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共18页。试卷主要包含了下列说法中错误的是,的算术平方根是,以下正方形的边长是无理数的是,若与互为相反数,则a,下列各式中,化简结果正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共21页。试卷主要包含了实数在哪两个连续整数之间,有一个数值转换器,原理如下,下列说法正确的是,﹣π,﹣3,,的大小顺序是,下列等式正确的是,若,则的值为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map