搜索
    上传资料 赚现金
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题
    立即下载
    加入资料篮
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题01
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题02
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数必考点解析练习题03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共1页。试卷主要包含了下列说法中错误的是,下列各数中,最小的数是,下列各式正确的是.,下列说法,16的平方根是,4的平方根是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数必考点解析

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列各数是无理数的是(   

    A.-3 B. C.2.121121112 D.

    2、下列说法正确的是(   

    A.的相反数是 B.2是4的平方根

    C.是无理数 D.

    3、估计的值在(   

    A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间

    4、下列说法中错误的是(  )

    A.9的算术平方根是3 B.的平方根是

    C.27的立方根为 D.平方根等于±1的数是1

    5、下列各数中,最小的数是(   

    A.0 B. C. D.﹣3

    6、下列各式正确的是(    ).

    A. B.

    C. D.

    7、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是(   

    A.1 B.2 C.3 D.4

    8、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    9、4的平方根是(  )

    A.2 B.﹣2 C.±2 D.没有平方根

    10、已知2m﹣1和5﹣ma的平方根,a是(   

    A.9 B.81 C.9或81 D.2

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若一个正数的两个平方根分别为 a+3与3a+1,则a=__________.

    2、比较大小:____+1.(填“>”、“<”或“=”).

    3、计算:__________.

    4、已知ab 是有理数,且满足,那么a=________,b =________.

    5、计算:______.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:

    2、已知是正数的两个平方根,且,求值,及的值.

    3、计算:

    4、我们知道,假分数可以化为整数与真分数的和的形式.例如:=1+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,称之为“假分式”;当分子的次数小于分母的次数时,称之为“真分式”.例如:像,…,这样的分式是假分式;像,…,这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:.解决下列问题:

    (1)写出一个假分式为:   

    (2)将分式化为整式与真分式的和的形式为:    ;(直接写出结果即可)

    (3)如果分式的值为整数,求x的整数值.

    5、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为

    参考小燕同学的做法,解答下列问题:

    (1)写出的小数部分为________;

    (2)已知的小数部分分别为ab,求a2+2abb2的值;

    (3)如果,其中x是整数,0<y<1,那么=________

    (4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).

    6、计算

    (1)

    (2)

    7、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为abab).定义:若数mb3a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3a3=(ba)(b2+ab+a2).)

    (1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;

    (2)已知两个“复合数”的差是42,求这两个“复合数”.

    8、观察下列等式:

    第1个等式:12=13

    第2个等式:(1+2)2=13+23

    第3个等式:(1+2+3)2=13+23+33

    第4个等式:(1+2+3+4)2=13+23+33+43

    ……

    按照以上规律,解决下列问题:

    (1)写出第5个等式:__________________;

    (2)写出第nn为正整数)个等式:__________________(用含n的等式表示);

    (3)利用上述规律求值:

    9、计算:

    10、计算题

    (1)

    (2)(﹣1)2021

     

    -参考答案-

    一、单选题

    1、D

    【分析】

    根据无理数的定义:无限不循环小数统称为无理数,判断上面四个数是否为无理数即可.

    【详解】

    A、-3是整数,属于有理数.

    B、是分数,属于有理数.

    C、2.121121112是有限小数,属于有理数.

    D、是无限不循环小数,属于无理数.

    故选:D.

    【点睛】

    本题主要是考察无理数的概念,初中数学中常见的无理数主要是:等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.

    2、B

    【分析】

    根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.

    【详解】

    解:A. 负数没有平方根,故无意义,A错误;

    B.,故2是4的平方根,B正确;

    C.是有理数,故C错误;

    D. ,故D错误;

    故选B.

    【点睛】

    本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.

    3、C

    【分析】

    将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.

    【详解】

    故选:C.

    【点睛】

    本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.

    4、C

    【分析】

    根据平方根,算术平方根,立方根的性质,即可求解.

    【详解】

    解:A、9的算术平方根是3,故本选项正确,不符合题意;

    B、因为 ,4的平方根是 ,故本选项正确,不符合题意;

    C、27的立方根为3,故本选项错误,符合题意;

    D、平方根等于±1的数是1,故本选项正确,不符合题意;

    故选:C

    【点睛】

    本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.

    5、C

    【分析】

    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.

    【详解】

    解:

    所给的各数中,最小的数是

    故选:C.

    【点睛】

    本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.

    6、D

    【分析】

    一个整数有两个平方根,这两个平方根互为相反数;如果一个数的立方等于,那么这个数叫做立方根;据此可得结论.

    【详解】

    解:A、,原式错误,不符合题意;

    B、,原式错误,不符合题意;

    C、,原式错误,不符合题意;

    D、,原式正确,符合题意;

    故选:D.

    【点睛】

    本题考查了立方根,平方根,算数平方根,熟练掌握相关概念是解本题的关键.

    7、A

    【分析】

    分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.

    【详解】

    解:①-27的立方根是-3,错误;

    ②36的算数平方根是6,错误;

    的立方根是,正确;

    的平方根是,错误,

    ∴正确的说法有1个,

    故选:A.

    【点睛】

    本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.

    8、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    9、C

    【分析】

    根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.

    【详解】

    解:4的平方根,

    即:

    故选:C.

    【点睛】

    题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.

    10、C

    【分析】

    分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.

    【详解】

    解:若2m﹣1与5﹣m互为相反数,

    则2m﹣1+5﹣m=0,

    m=﹣4,

    ∴5﹣m=5﹣(﹣4)=9,

    a=92=81,

    若2m﹣1=5﹣m

    m=2,

    ∴5﹣m=5﹣2=3,

    a=32=9,

    故选C.

    【点睛】

    本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.

    二、填空题

    1、-1

    【分析】

    直接利用平方根的定义得出a+3+2a+3=0,进而求出答案.

    【详解】

    解:∵一个正数的两个平方根分别为a+3和3a+1,

    a+3+3a+1=0,

    解得:a=-1,

    故答案为:-1.

    【点睛】

    本题考查了平方根的定义.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.

    2、<

    【分析】

    根据1<<2、1<<2解答即可.

    【详解】

    解:∵1<<2,1<<2,

    ∴2<+1<3,

    +1,

    故答案为:<.

    【点睛】

    本题考查无理数的估算、实数的大小比较,熟练掌握无理数的估算是解答的关键.

    3、3

    【分析】

    根据实数的运算法则即可求出答案.

    【详解】

    解:原式

    【点睛】

    本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.

    4、-2    -1   

    【分析】

    利用平方与算术平方根的非负性即可解决.

    【详解】

    ,且

    故答案为:-2,-1

    【点睛】

    本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.

    5、-5

    【分析】

    由题意直接根据立方根的性质即可进行分析求值.

    【详解】

    解:.

    故答案为:.

    【点睛】

    本题考查立方根求值,熟练掌握立方根的性质是解题的关键.

    三、解答题

    1、-10

    【分析】

    根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算.

    【详解】

    解:

    【点睛】

    本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值.

    2、

    【分析】

    根据正数的平方根有2个,且互为相反数,以及求出的值即可.

    【详解】

    解:因为是正数的两个平方根,可得:

    代入,解得:

    所以

    所以

    【点睛】

    此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.

    3、1

    【分析】

    直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.

    【详解】

    解:

    =1+3﹣2﹣1

    =1.

    【点睛】

    本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.

    4、(1);(2)1+;(3)x=0,1,3,4

    【分析】

    (1)根据定义即可求出答案.

    (2)根据题意给出的变形方法即可求出答案.

    (3)先将分式化为真分式与整式的和,然后根据题意即可求出x的值.

    【详解】

    解:(1)根据题意,是一个假分式;

    故答案为:(答案不唯一).

    (2)

    故答案为:

    (3)∵

    x2=±1或x2=±2,

    x=0,1,3,4;

    【点睛】

    本题考查学生的阅读能力,解题的关键是正确理解真假分式的定义,本题属于基础题型.

    5、(1);(2)1;(3);(4)

    【分析】

    (1)由题意易得,则有的整数部分为3,然后问题可求解;

    (2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;

    (3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;

    (4)根据题意可直接进行求解.

    【详解】

    解:(1)∵

    的整数部分为3,

    的小数部分为

    故答案为

    (2)∵

    的小数部分分别为ab

    (3)由可知

    的小数部分为

    x是整数,0<y<1,

    故答案为

    (4)∵无理数m为正整数)的整数部分为n

    的小数部分为

    的小数部分即为的小数部分加1,为

    故答案为

    【点睛】

    本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.

    6、

    (1)-2

    (2)1

    【分析】

    (1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;

    (2)先去绝对值,去括号,再进行实数的加、减混合计算即可;

    (1)

    解:

    (2)

    解:

    【点睛】

    本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.

    7、(1)12不是复合数;证明见解析;(2)98和56.

    【分析】

    (1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;

    (2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.

    【详解】

    (1)12不是复合数,

    ∵找不到两个整数ab,使a3b3=12,

    故12不是复合数,

    设“正点”P所表示的数为xx为正整数),

    ax﹣1,bx+1,

    ∴(x+1)3﹣(x﹣1)3

    =(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)

    =2(3x2+1)

    =6x2+2,

    ∴6x2+2﹣2=6x2一定能被6整除;

    (2)设两个复合数为6m2+2和6n2+2(mn都是正整数),

    ∵两个“复合数”的差是42,

    ∴(6m2+2)﹣(6n2+2)=42,

    m2n2=7,

    mn都是正整数,

    ∴6m2+2=98,6n2+2=56,

    这两个“复合数”为98和56.

    【点睛】

    本题考查关于实数的新定义题型,理解新定义是解题的关键.

    8、

    (1)(1+2+3+4+5)2=13+23+33+43+53

    (2)(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)265

    【分析】

    (1)根据前几个等式的变化规律解答即可;

    (2)根据前几个等式的变化规律写出第n个等式即可;

    (3)根据变化规律和平方差公式进行计算即可.

    (1)

    解:根据题意,第5个等式为(1+2+3+4+5)2=13+23+33+43+53

    故答案为:(1+2+3+4+5)2=13+23+33+43+53

    (2)

    解:根据题意,第n个等式为(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    故答案为:(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3

    (3)

    解:由(2)中(1+2+3+4+5+…+n2=13+23+33+43+53+…+n3知,

    (1+2+3+4+5+…+20)2=13+23+33+43+53+…+203①,

    (1+2+3+4+5+…+10)2=13+23+33+43+53+…+103②,

    ①-②得:

    (1+2+3+4+5+…+20+1+2+3+4+5+…+10)×(11+12+13+…+20)=113+123+133+…+203

    =(1+2+3+4+5+…+20+1+2+3+4+5+…+10)

    =265.

    【点睛】

    本题考查数字类规律探究、平方差公式、与实数运算相关的规律题,理解题意,正确得出等式的变化规律并能灵活运用是解答的关键.

    9、2

    【分析】

    先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.

    【详解】

    解:

    【点睛】

    本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.

    10、(1)2+2;(2)4

    【分析】

    (1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;

    (2)原式利用乘方的意义,算术平方根定义计算即可得到结果.

    【详解】

    解:(1)原式=2﹣2+|﹣4|

    =2﹣2+4

    =2+2;

    (2)原式=﹣1+5

    =4.

    【点睛】

    本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试当堂检测题,共19页。试卷主要包含了下列说法,若,那么,观察下列算式等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试课后测评: 这是一份2020-2021学年第十二章 实数综合与测试课后测评,共20页。试卷主要包含了下列等式正确的是,在下列四个实数中,最大的数是,下列语句正确的是,下列说法正确的是,100的算术平方根是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试习题,共1页。试卷主要包含了下列说法正确的是,下列整数中,与-1最接近的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map