|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数定向测试练习题
    立即下载
    加入资料篮
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数定向测试练习题01
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数定向测试练习题02
    2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数定向测试练习题03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十二章 实数综合与测试习题

    展开
    这是一份2020-2021学年第十二章 实数综合与测试习题,共1页。试卷主要包含了三个实数,2,之间的大小关系,16的平方根是,下列说法,下列说法不正确的是,计算2﹣1+30=,的相反数是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数定向测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列各数中,比小的数是(    

    A. B.- C. D.

    2、数轴上表示1,的对应点分别为AB,点B关于点A的对称点为C,则点C所表示的数是(   

    A. B. C. D.

    3、4的平方根是(  )

    A.2 B.﹣2 C.±2 D.没有平方根

    4、三个实数,2,之间的大小关系(  )

    A.>2 B.>2> C.2> D.<2<

    5、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    6、下列说法:①-27的立方根是3;②36的算数平方根是;③的立方根是;④的平方根是.其中正确说法的个数是(   

    A.1 B.2 C.3 D.4

    7、下列说法不正确的是(   

    A.0的平方根是0 B.一个负数的立方根是一个负数

    C.﹣8的立方根是﹣2 D.8的算术平方根是2

    8、计算2﹣1+30=(   

    A. B.﹣1 C.1 D.

    9、的相反数是(  )

    A. B. C. D.

    10、若互为相反数,则ab的值为(   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、计算______.

    2、已知xy满足关系式=0,则xy的算术平方根为______.

    3、比较大小:_____2(填“>”或“<”或“=”)

    4、xy表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.

    5、在实数范围内分解因式:a2﹣3b2=_____.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算:+++

    2、求下列各式中的x

    (1)

    (2)

    3、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.

    (1)对10进行1次操作后变为_______,对200进行3次作后变为_______;

    (2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;

    (3)若正整数m进行3次操作后变为1,求m的最大值.

    4、解方程:

    (1)4(x﹣1)2=36;

    (2)8x3=27.

    5、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

    6、求下列各数的平方根:

    (1)121            (2)            (3)(-13)2                 (4)

    7、计算:

    (1)18+(﹣17)+7+(﹣8);

    (2)×(﹣12);

    (3)﹣22+|﹣1|+

    8、已知是正数的两个平方根,且,求值,及的值.

    9、如图,数轴的原点为O,点ABC是数轴上的三点,点B对应的数是1,AB=6,BC=2,动点PQ同时分别从AC出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).

    (1)点A表示的数为      ,点C表示的数为      

    (2)求t为何值时,点P与点Q能够重合?

    (3)是否存在某一时刻t,使点O平分线段PQ且点P与点Q在原点的异侧?若存在,请求出满足条件的t值.若不存在,请说明理由.

    10、计算:

    (1)

    (2)+(2

     

    -参考答案-

    一、单选题

    1、A

    【分析】

    直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.

    【详解】

    解:A. <-3,故A正确;

    B. ->-3,故B错误;

    C. >-3,故C错误;

    D. >-3,故D错误.

    ​​​​​​​故选A.

    【点睛】

    此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.

    2、C

    【分析】

    首先根据数轴上表示1,的对应点分别为AB可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答.

    【详解】

    解:∵数轴上表示1,的对应点分别为AB

    AB−1,

    ∵点B关于点A的对称点为C

    ACAB

    ∴点C的坐标为:1−(−1)=2−

    故选:C

    【点睛】

    本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.

    3、C

    【分析】

    根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.

    【详解】

    解:4的平方根,

    即:

    故选:C.

    【点睛】

    题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.

    4、A

    【分析】

    ,根据被开方数的大小即判断这三个数的大小关系

    【详解】

    2<

    故选A

    【点睛】

    本题考查了实数大小比较,掌握无理数的估算是解题的关键.

    5、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    6、A

    【分析】

    分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.

    【详解】

    解:①-27的立方根是-3,错误;

    ②36的算数平方根是6,错误;

    的立方根是,正确;

    的平方根是,错误,

    ∴正确的说法有1个,

    故选:A.

    【点睛】

    本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.

    7、D

    【分析】

    直接利用算术平方根、平方根、立方根的定义分析得出答案.

    【详解】

    解:A、0的平方根是0,原说法正确,故此选项不符合题意;

    B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;

    C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;

    D、8的算术平方根是2,原说法不正确,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.

    8、D

    【分析】

    利用负整数指数幂和零指数幂的意义进行化简计算即可.

    【详解】

    解:原式=+1=

    故选:D.

    【点睛】

    本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.

    9、B

    【分析】

    直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.

    【详解】

    解:的相反数是

    故选:B.

    【点睛】

    本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.

    10、D

    【分析】

    首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.

    【详解】

    解:∵互为相反数,

    +=0,

    得:

    得:,解得:

    代入①得:,解得:

    故选:D.

    【点睛】

    此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于ab的方程组并求解.

    二、填空题

    1、##

    【分析】

    根据立方根和算术平方根的求解方法求解即可.

    【详解】

    解:

    故答案为:

    【点睛】

    本题主要考查了算术平方根和立方根,熟知二者的定义是解题的关键.

    2、4

    【分析】

    直接利用算术平方根以及偶次方的性质得出xy的值,进而得出答案.

    【详解】

    解:∵

    x+4=0,y-2=0,

    解得:x=-4,y=2,

    xy=(-4)2=16,16的算术平方根是:4.

    故答案为:4.

    【点睛】

    本题主要考查了算术平方根以及偶次方的性质,正确得出xy的值是解题关键.

    3、>

    【分析】

    根据即可得出答案.

    【详解】

    故答案为:>.

    【点睛】

    本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.

    4、-6

    【分析】

    根据找出新的运算方法,再根据新的运算方法计算即可.

    【详解】

    故答案为:

    【点睛】

    本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.

    5、(a+)(aa)(a+

    【分析】

    根据平方差公式因式分解,运用2次,注意分解要彻底

    【详解】

    a2﹣3b2

    a2﹣(2

    =(a+)(a).

    【点睛】

    本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.

    三、解答题

    1、

    【分析】

    先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.

    【详解】

    解:原式

    【点睛】

    本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.

    2、

    (1)

    (2)

    【分析】

    (1)根据平方根定义开方,求出两个方程的解即可;

    (2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.

    (1)

    开平方得,

    解得,

    (2)

    移项得,

    方程两边同除以8,得,

    开立方,得,

    【点睛】

    本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.

    3、(1)3;1;(2);(3)的最大值为255

    【详解】

    解:(1)∵

    ∴对10进行1次操作后变为3;

    同理可得

    同理可得

    同理可得

    ∴对200进行3次作后变为1,

    故答案为:3;1;

    (2)设m进行第一次操作后的数为x

    ∵要经过两次操作.

    故答案为:

    (3)设m经过第一次操作后的数为n,经过第二次操作后的数为x

    ∵要经过3次操作,故

    是整数.

    的最大值为255.

    【点睛】

    本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.

    4、(1)x=4或﹣2;(2)x

    【分析】

    (1)先变形为(x﹣1)2=9,然后求9的平方根即可;

    (2)先变形为x3,再利用立方根的定义得到答案.

    【详解】

    解:(1)方程两边除以4得,(x﹣1)2=9,

    x﹣1=±3,

    x=4或﹣2;

    (2)方程两边除以8得,x3

    所以x

    【点睛】

    本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.

    5、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

    6、 (1)±11; (2) ; (3)±13; (4)±8

    【分析】

    (1)直接根据平方根的定义求解;

    (2)把带分数化成假分数,再根据平方根的定义求解;

    (3)(4)先化简,再根据平方根的定义求解.

    【详解】

    含有乘方运算先求出它的幂,再开平方.

    (1)因为(±11)2=121,所以121的平方根是±11;

    (2),因为, 所以的平方根是

    (3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;

    (4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.

    【点睛】

    本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.

    7、(1)0;(2)1;(3)

    【分析】

    (1)根据有理数的加法计算法则求解即可;

    (2)根据有理数的乘法分配律求解即可;

    (3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.

    【详解】

    解:(1)

    (2)

    (3)

    【点睛】

    本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.

    8、

    【分析】

    根据正数的平方根有2个,且互为相反数,以及求出的值即可.

    【详解】

    解:因为是正数的两个平方根,可得:

    代入,解得:

    所以

    所以

    【点睛】

    此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.

    9、(1)-5,3;(2)t=4;(3)存在,t=,理由见解析.

    【分析】

    (1)由点B对应的数及线段ABBC的长,可找出点AC对应的数;

    (2)根据点PQ的出发点、速度及方向,由追击的等量关系列出含t的方程,解方程即可;

    (3)由题意得OP=OQ,据此列一元一次方程,解此方程即可.

    【详解】

    解:(1)1-6=-5,1+2=3

    即点A表示的数为 -5,点C表示的数为3,

    故答案为:-5,3;

    (2)若点P与点Q能够重合,则AP-CQ=AC

    即3t-t=8

    2t=8

    t=4

    答:当t=4时,点P与点Q能够重合.

    (3)存在,理由如下:

    若点OPQ中点,且点P与点Q在原点的异侧,即OP=OQ

    5-3t=3+t

    4t=2

    t=

    答:当t=时,点O平分线段PQ且点P与点Q在原点的异侧.

    【点睛】

    本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.

    10、(1);(2)

    【分析】

    (1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;

    (2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.

    【详解】

    (1)原式

    (2)原式

    【点睛】

    此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共21页。试卷主要包含了下列判断中,你认为正确的是,在下列各数,有一个数值转换器,原理如下,10的算术平方根是,a为有理数,定义运算符号▽,化简计算﹣的结果是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评,共1页。试卷主要包含了10的算术平方根是,规定一种新运算,在实数中,无理数的个数是,估算的值是在之间,若,则的值为,下列判断等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试练习: 这是一份2020-2021学年第十二章 实数综合与测试练习,共1页。试卷主要包含了有一个数值转换器,原理如下,若,则整数a的值不可能为,下列说法正确的是,已知a=,b=-|-|,c=,估计的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map