![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数重点解析试题(含答案及详细解析)01](http://img-preview.51jiaoxi.com/2/3/12706149/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数重点解析试题(含答案及详细解析)02](http://img-preview.51jiaoxi.com/2/3/12706149/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版(上海)七年级数学第二学期第十二章实数重点解析试题(含答案及详细解析)03](http://img-preview.51jiaoxi.com/2/3/12706149/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中沪教版 (五四制)第十二章 实数综合与测试当堂检测题
展开沪教版(上海)七年级数学第二学期第十二章实数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的算术平方根是( )
A.2 B. C. D.
2、3的算术平方根为( )
A. B.9 C.±9 D.±
3、下列说法正确的是( )
A.5是25的算术平方根 B.的平方根是±6
C.(﹣6)2的算术平方根是±6 D.25的立方根是±5
4、下列计算正确的是( ).
A. B. C. D.
5、在下列四个选项中,数值最接近的是( )
A.2 B.3 C.4 D.5
6、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
7、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2 B.3 C.4 D.5
8、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
9、的相反数是( )
A. B. C. D.
10、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )
A. B.2 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知的小数部分是a,的整数部分是b,则a+b=_________.
2、若实数满足,则=_____________.
3、已知、两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:
(1)________;(2)________ ;(3)________;
(4)________;(5)________;(6)________
4、一个正方形的面积为5,则它的边长为_____.
5、计算:=___.
三、解答题(10小题,每小题5分,共计50分)
1、已知x,y满足,求x、y的值.
2、计算:+++.
3、求下列各式的值:
(1)
(2)
(3)
4、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
5、计算:(1);
(2).
6、计算:
(1).
(2)+()2﹣
7、解方程:
(1)x2=25;
(2)8(x+1)3=125.
8、(1)计算: ;
(2)求的值: .
9、计算
10、已知的立方根是2,算术平方根是4,求的算术平方根.
-参考答案-
一、单选题
1、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
2、A
【分析】
利用算术平方根的定义求解即可.
【详解】
3的算术平方根是.
故选:A.
【点睛】
本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.
3、A
【分析】
如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的立方等于a,那么这个数叫做a的立方根;据此判断即可.
【详解】
解:A、5是25的算术平方根,正确,符合题意;
B、,6的平方根是±,错误,不符合题意;
C、(﹣6)2的算术平方根是6,错误,不符合题意;
D、25的平方根是±5,错误,不符合题意;
故选:A.
【点睛】
本题考查了平方根、算术平方根、立方根,熟练掌握相关定义是解本题的关键.
4、D
【分析】
由负数没有算术平方根可判断A,由算术平方根不可能是负数可判断B,C,由立方根的含义可判断D,从而可得答案.
【详解】
解:没有意义,故A不符合题意;
,故B不符合题意;
,故C不符合题意;
,运算正确,故D符合题意;
故选D
【点睛】
本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.
5、A
【分析】
根据无理数的估算先判断,进而根据,,进而可以判断,即可求得答案
【详解】
解:,,,
,即更接近2
故选A
【点睛】
本题考查了无理数的估算,掌握无理数的估算是解题的关键.
6、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
7、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
8、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
9、B
【分析】
直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.
【详解】
解:的相反数是;
故选:B.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.
10、C
【分析】
直接利用立方根以及算术平方根、无理数分析得出答案.
【详解】
解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,
即.
故选:C.
【点睛】
本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.
二、填空题
1、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
2、1
【分析】
根据绝对值与二次根式的非负性求出a,b的值,故可求解.
【详解】
解:∵
∴a-2=0,b-4=0
∴a=2,b=4
∴=
故答案为:1.
【点睛】
此题主要考查代数式求值,解题的关键是熟知非负性的运用.
3、< > < > > <
【分析】
根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.
【详解】
解: ∵由数轴可知:b>0,a<0,|a|>|b|,
∴(1)a<b,(2)|a|>|b|,(3)a+b<0,
(4)b−a>0,(5)a+b>a−b,(6),
故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.
【点睛】
本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.
4、
【分析】
根据正方形面积根式求出边长,即可得出答案.
【详解】
解:边长为:
故答案为
【点睛】
本题考查了算术平方根,关键是会求一个数的算术平方根.
5、1
【分析】
根据平方和立方根的定义分别化简,再计算算术平方根即可.
【详解】
解:,
故答案为:1.
【点睛】
本题考查了实数的运算,解题的关键是掌握算术平方根和立方根的定义.
三、解答题
1、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
2、.
【分析】
先化简绝对值、计算算术平方根与立方根,再计算实数的加减法即可得.
【详解】
解:原式
.
【点睛】
本题考查了算术平方根与立方根、实数的加减等知识点,熟练掌握各运算法则是解题关键.
3、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
4、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
5、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
6、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
7、(1);(2)
【分析】
(1)根据平方根的定义计算即可;
(2)根据立方根的定义计算即可;
【详解】
解:(1)x2=25
x=±5.
(2)
x+1=,
x=.
【点睛】
本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.
8、(1)0;(2)
【分析】
(1)根据立方根和平方根的性质化简,再计算加法,即可求解;
(2)先将系数化为1,再利用平方根的性质,即可求解.
【详解】
解:(1) .
原式=-2+2
;
(2)
∴
解得: .
【点睛】
本题主要考查了立方根和平方根的性质,熟练掌握 是解题的关键.
9、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
10、
【分析】
根据立方根、算术平方根解决此题.
【详解】
解:由题意得:2a+4=8,3a+b-1=16.
∴a=2,b=11.
∴4a+b=8+11=19.
∴4a+b的算术平方根为.
【点睛】
本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共18页。试卷主要包含了下列说法,有一个数值转换器,原理如下,若与互为相反数,则a,0.64的平方根是,若 ,则等内容,欢迎下载使用。
2021学年第十二章 实数综合与测试课后练习题: 这是一份2021学年第十二章 实数综合与测试课后练习题,共21页。试卷主要包含了若 ,则,化简计算﹣的结果是,下列四个数中,最小的数是,下列语句正确的是,下列各数中,最小的数是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共17页。试卷主要包含了若,则的值为,在实数中,无理数的个数是,下列各式中正确的是,在下列各数等内容,欢迎下载使用。