![2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数综合练习试题(名师精选)01](http://img-preview.51jiaoxi.com/2/3/12706071/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数综合练习试题(名师精选)02](http://img-preview.51jiaoxi.com/2/3/12706071/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪教版(上海)七年级数学第二学期第十二章实数综合练习试题(名师精选)03](http://img-preview.51jiaoxi.com/2/3/12706071/0/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练
展开沪教版(上海)七年级数学第二学期第十二章实数综合练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的值为( )
A. B. C. D.或
2、在实数|﹣3.14|,﹣3,﹣,﹣π中,最小的数是( )
A.﹣ B.﹣3 C.|﹣3.14| D.﹣π
3、下列等式正确的是( ).
A. B. C. D.
4、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )
A.2 B.4 C.8 D.6
5、实数﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
6、关于的叙述,错误的是( )
A.是无理数
B.面积为8的正方形边长是
C.的立方根是2
D.在数轴上可以找到表示的点
7、下列运算正确的是( )
A. B. C. D.
8、已知a=,b=-|-|,c=(-2)3,则a,b,c的大小关系是( )
A.b<a<c B.b<c<a C.c<b<a D.a<c<b
9、下列等式正确的是( )
A. B. C. D.
10、下列各式中,化简结果正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算下列各题:
(1)|3﹣4|﹣1=_____;
(2)_____;
(3)30=_____;
(4)_____.
2、一个正数的两个平方根分别是,则这个正数是_____.
3、 “平方根节”是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如:2009年的3月3日,2016年的4月4日.请写出你喜欢的一个“平方根节”(题中所举的例子除外)______年_____月_______日.
4、的平方根是________.
5、已知a,b 是有理数,且满足,那么a=________,b =________.
三、解答题(10小题,每小题5分,共计50分)
1、对于一个三位自然数m,若m的百位数字等于两个一位正整数a与b的和,m的个位数字等于两个一位正整数a与b的差,m的十位数字等于b,则称m是“和差数”,规定.例如:723是“和差数”,因为,,,所以723是“和差数”,即.
(1)填空:______.
(2)请判断311是否是“和差数”?并说明理由;
(3)若一个三位自然数(,,x、y是整数,即n的百位数字是9,十位数字是x,个位数字是y)为“和差数”,求所有满足条件的“和差数”n.
2、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
3、计算题:
(1);
(2).
4、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
5、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为.
参考小燕同学的做法,解答下列问题:
(1)写出的小数部分为________;
(2)已知与的小数部分分别为a和b,求a2+2ab+b2的值;
(3)如果,其中x是整数,0<y<1,那么=________
(4)设无理数(m为正整数)的整数部分为n,那么的小数部分为________(用含m,n的式子表示).
6、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
7、解方程:
(1)4(x﹣1)2=36;
(2)8x3=27.
8、计算:.
9、求下列各式中x的值.
(1)(x-3)3=4
(2)9(x+2)2=16
10、计算题
(1);
(2)(﹣1)2021+.
-参考答案-
一、单选题
1、C
【分析】
化简后利用平方根的定义求解即可.
【详解】
解:∵,
∴x2-9=55,
∴x2=64,
∴x=±8,
故选C.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
2、D
【分析】
把数字从大到小排序,然后再找最小数.
【详解】
解:|﹣3.14|=3.14.|﹣3|=3,|-|=,|﹣π|=π.
∴﹣π<﹣3<﹣<|﹣3.14|,
故选:D.
【点睛】
本题考查实数大小比较,掌握比较方法是本题关键.
3、由不等式的性质可知:5-2<−2<6-2,即3<−2<
故选:C.
【点睛】
本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.
4.C
【分析】
分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、由B得此选项正确;
D、,故此选项错误.
故选:C.
【点睛】
此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.
4、B
【分析】
经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.
【详解】
2n的个位数字是2,4,8,6循环,
所以810÷4=202…2,
则2810的末位数字是4.
故选:B.
【点睛】
本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.
5、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
6、C
【分析】
根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.
【详解】
解:A、是无理数,该说法正确,故本选项不符合题意;
B、∵,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;
C、8的立方根是2,该说法错误,故本选项符合题意;
D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.
7、B
【分析】
依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.
【详解】
A、,故A错误;
B、,故B正确;
C.,故C错误;
D.−|-2|=-2,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.
8、C
【分析】
本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较.
【详解】
解:由题意得:a===4,b==,c==-8,
∴c<b<a.
故选:C.
【点睛】
本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键.
9、C
【分析】
根据算术平方根的定义和性质,立方根的定义逐项分析判断即可
【详解】
A. ,故该选项不正确,不符合题意;
B. 无意义,故该选项不正确,不符合题意;
C. ,故该选项正确,符合题意;
D. ,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
10、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
二、填空题
1、0 3 1
【分析】
(1)先化简绝对值,再计算减法运算即可得;
(2)先计算有理数的乘方,再计算算术平方根即可得;
(3)计算零指数幂即可得;
(4)根据分式的加法运算法则即可得.
【详解】
解:(1)原式,
故答案为:0;
(2)原式,
故答案为:3;
(3)原式,
故答案为:1;
(4)原式,
故答案为:.
【点睛】
本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.
2、49
【分析】
根据一个正数有两个平方根,这两个平方根互为相反数,可得2a-1+5-3a=0,据此求出a的值是多少,进而求出这个正数是多少即可.
【详解】
解:根据题意,得:2a-1+5-3a=0,
解得a=4,
∴2a-1=2×4-1=7,
则这个正数为72=49,
故答案为:49.
【点睛】
本题考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.
3、2025 5 5
【分析】
首先确定月份和日子,最后确定年份即可.(答案不唯一).
【详解】
解:2025年5月5日.(答案不唯一).
故答案是:2025,5,5.
【点睛】
本题考查了平方根的应用,解题的关键是正确理解三个数字的关系.
4、±
【分析】
直接根据平方根的定义求解即可.
【详解】
解:的平方根为±=±.
故答案为:±.
【点睛】
本题主要考查了平方根,知道一个正数有两个平方根是解决本题的关键.
5、-2 -1
【分析】
利用平方与算术平方根的非负性即可解决.
【详解】
∵,,且
∴,
∴,
故答案为:-2,-1
【点睛】
本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.
三、解答题
1、
(1)412
(2)是,理由见解析
(3)941或933或925或917
【分析】
(1)根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,即可得解;
(2)根据定义即可判断311是“和差数”;
(3)由题意得到,解得,再结合a、b为正整数且,即可得解.
(1)
解:根据定义可知,百位上数字为:3+1=4,个位数字为:3-1=2,故412.
故答案为:412;
(2)
解:311是“和差数”,
∵,,,
∴是“和差数”;
(3)
解:∵(,,、是整数)
∴
∴
∴,,,
2、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
3、
(1)
(2)
【分析】
(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;
(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.
(1)
解:原式=
(2)
解:原式=
【点睛】
本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.
4、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
5、(1);(2)1;(3);(4)
【分析】
(1)由题意易得,则有的整数部分为3,然后问题可求解;
(2)由题意易得,则有,,然后可得,然后根据完全平方公式可进行求解;
(3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;
(4)根据题意可直接进行求解.
【详解】
解:(1)∵,
∴的整数部分为3,
∴的小数部分为;
故答案为;
(2)∵,
∴,,
∵与的小数部分分别为a和b,
∴,
∴;
(3)由可知,
∵,
∴的小数部分为,
∵x是整数,0<y<1,
∴,
∴;
故答案为;
(4)∵无理数(m为正整数)的整数部分为n,
∴的小数部分为,
∴的小数部分即为的小数部分加1,为;
故答案为.
【点睛】
本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.
6、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
7、(1)x=4或﹣2;(2)x=
【分析】
(1)先变形为(x﹣1)2=9,然后求9的平方根即可;
(2)先变形为x3=,再利用立方根的定义得到答案.
【详解】
解:(1)方程两边除以4得,(x﹣1)2=9,
∴x﹣1=±3,
∴x=4或﹣2;
(2)方程两边除以8得,x3=,
所以x=.
【点睛】
本题考查了平方根、立方根的运算,熟练掌握运算法则是解本题的关键.
8、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
9、(1)x=5;(2)x=-或x=.
【分析】
(1)把x-3可做一个整体求出其立方根,进而求出x的值;
(2)把x+2可做一个整体求出其平方根,进而求出x的值.
【详解】
解:(1) (x−3)3=4,
(x-3)3=8,
x-3=2,
∴x=5;
(2)9(x+2)2=16,
(x+2)2=,
x+2=,
∴x=-或x=.
【点睛】
本题考查了立方根和平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
10、(1)2+2;(2)4
【分析】
(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;
(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.
【详解】
解:(1)原式=2﹣2+|﹣4|
=2﹣2+4
=2+2;
(2)原式=﹣1+5
=4.
【点睛】
本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.
数学七年级下册第十二章 实数综合与测试课后练习题: 这是一份数学七年级下册第十二章 实数综合与测试课后练习题,共18页。试卷主要包含了在下列各数,若,则整数a的值不可能为,若,那么,估算的值是在之间,的算术平方根是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试练习: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试练习,共20页。试卷主要包含了下列说法中,正确的是,在以下实数,下列各数中,比小的数是,估计的值应该在.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了若与互为相反数,则a,9的平方根是,的值等于,下列各数是无理数的是等内容,欢迎下载使用。