初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题
展开这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共22页。试卷主要包含了数学老师将本班学生的身高数据,下列说法中正确的是.等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
2、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )
A., B., C., D.,
3、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )
A.平均数变小,方差变小 B.平均数变小,方差变大
C.平均数变大,方差变小 D.平均数变大,方差变大
4、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
5、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )
A.平均数是80 B.众数是60 C.中位数是100 D.方差是20
6、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是( )
A.平均数 B.中位数 C.众数 D.方差
7、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
8、下列说法中正确的是( ).
A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查
C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小
9、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )
A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的极差是450元
D.该企业员工最大捐款金额是500元
10、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是( )
A.中位数 B.方差 C.平均数 D.众数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是________,极差是________,方差是________.
2、已知:①1,2,3,4,5的平均数是3,方差是2;
②2,3,4,5,6的平均数是4,方差是2;
③1,3,5,7,9的平均数是5,方差是8;
④2,4,6,8,10的平均数是6,方差是8;
请按要求填空:
(1),,,,的平均数是 ,方差是 ;
(2),,,,的平均数是 ,方差是 ;
(3),,,,的平均数是 ,方差是 .
3、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为,,,则小麦长势比较整齐的试验田是__________.
4、一组数据7,2,1,3的极差为______.
5、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______.
| 甲 | 乙 | 丙 |
44 | 44 | 42 | |
1.7 | 1.5 | 1.7 |
三、解答题(5小题,每小题10分,共计50分)
1、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:
(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)
七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82
八年级10名学生的成绩在C组中的数据是:94,90,92
七、八年级抽取的学生竞赛成绩统计表
年级 | 平均数 | 中位数 | 众数 | 方差 |
七年级 | b | c | d | 52 |
八年级 | 92 | 93 | 100 | 50.4 |
根据以上信息,解答下列问题:
(1)这次比赛中 年级成绩更平衡,更稳定;
(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d=
(3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数
2、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:
废旧电池数/节 | 3 | 4 | 5 | 6 | 8 |
人数/人 | 10 | 15 | 12 | 7 | 6 |
(1)这50名学生平均每人收集废旧电池多少节?
(2)这组废旧电池节数的中位数,众数分别是多少?
(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?
3、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.
4、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x,将所得数据分为5组(“很满意”:;“满意”:;“比较满意”:;“不太满意”:;“不满意”:;)区教委将数据进行分析后,得到如下部分信息:
a.甲中学延时服务得分情况扇形统计图
b.乙中学延时服务得分情况频数分布直方图
c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:
学校 | 平均数 | 中位数 | 众数 |
甲 | 79 | 79 | 80 |
乙 | 85 | m | 83 |
d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:.
e.甲、乙两中学“满意组”的人数一样多.
请你根据以上信息,回答下列问题:
(1)直接写出a和m的值;
(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);
(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.
5、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析,得到如下部分信息:
请你根据以上信息,回答下列问题:
(1)直接写出a的值;
(2)补全条形统计图;
(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人?
-参考答案-
一、单选题
1、A
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
2、C
【分析】
直接利用样本容量的定义以及结合频数除以总数=频率得出答案.
【详解】
解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,
∴此抽样样本中,样本容量为:100,
不合格的频率是:=0.08.
故选:C.
【点睛】
本题主要考查了频数与频率,正确掌握频率求法是解题关键.
3、A
【分析】
分别计算出原数据和新数据的平均数和方差即可得.
【详解】
解:原数据的平均数为=192.8,
则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
新数据的平均数为=192,
则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
所以平均数变小,方差变小,
故选:A.
【点睛】
本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.
4、B
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
5、A
【分析】
根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.
【详解】
将这组数据从小到大重新排列为:60、60、70、90、90、90、100,
所以这组数据的众数是90、中位数是90、
平均数为、
方差为.
观察只有选项A正确,
故选:A.
【点睛】
本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.
6、D
【分析】
由平均数,中位数,众数,方差的定义逐项判断即可.
【详解】
A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.
B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.
C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.
D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.
故选:D.
【点睛】
本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.
7、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
8、B
【分析】
分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.
【详解】
解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;
B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;
C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;
D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;
故选:B.
【点睛】
本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
9、A
【详解】
解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;
B、共20人,样本容量为20,故选项B正确;
C、极差为500﹣50=450元,故选项C正确;
D、该企业员工最大捐款金额是500元,故选项D正确.
故选:A .
【点睛】
本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.
10、B
【分析】
根据方差的意义及平均数、众数、中位数的定义求解可得.
【详解】
解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;
故选:B.
【点睛】
本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.
二、填空题
1、11 6 8
【分析】
根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.
【详解】
解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,
∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,
极差为2×3=6,
方差为2×22=8,
故答案为:11、6、8.
【点睛】
此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
2、(1),2 ;(2),8;(3),
【分析】
(1)数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,只需将数据的平均数加上(n−1)即可,而数据波动幅度不变;
(2)数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,只需将原数据的平均数加上(n−2)即可,而数据波动幅度不变;;
(3)由数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,将原数据的平均数乘以n,方差乘以n2即可得出答案.
【详解】
解:(1)∵数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,
∴数据n,n+1,n+2,n+3,n+4的平均数3+n−1=n+2,方差依然是2,
故答案为:n+2,2;
(2)∵数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,
∴n,n+2,n+4,n+6,n+8的平均数是6+n−2=n+4,方差依然是8,
故答案为:n+4,8;
(3)数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,
∴数据n,2n,3n,4n,5n的平均数为3n,方差为2n2,
故答案为:3n,2n2.
【点睛】
本题主要考查方差和平均数,解题的关键是掌握平均数和方差的性质.
3、乙
【分析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.
【详解】
解:∵,,
∴,
∵3.8<4,
∴S乙2<S甲2,
∴小麦长势比较整齐的试验田是乙试验田.
故答案为:乙.
【点睛】
本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
4、6
【分析】
根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.
【详解】
解:一组数据7,2,1,3的极差为,
故答案为:.
【点睛】
本题考查了极差的定义,熟记定义是解本题的关键.
5、乙
【分析】
先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.
【详解】
解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,
又乙的方差比甲小,所以乙的产量比较稳定,
即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;
故答案为:乙.
【点睛】
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.
三、解答题
1、(1)八;(2)40;91.4;93;96;(3)840人
【分析】
(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.
【详解】
(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;
七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数
七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).
【点睛】
考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.
2、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.
【分析】
(1)求出50名学生收集废旧电池的总数,再求平均数即可;
(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;
(3)先求出这些电池可污染的水的数量即可解决问题.
【详解】
解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);
(2)从统计表格得,众数为4节;
由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);
(3)样本中电池总数4.8×50=240,
由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,
故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:
,,,,即,,,,
由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,
故在50名学生收集的废电池可少受污染水的吨数为
=320000(吨)
320000÷50×500=3200000吨,
答:本次活动可减少受浸染的水3200000吨.
【点睛】
本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.
3、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙
【分析】
(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.
【详解】
解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),
则中位数是9.5分;
乙队成绩中10出现了4次,出现的次数最多,
则乙队成绩的众数是10分;
故答案为:9.5,10;
(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,
则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;
(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,
∴成绩较为整齐的是乙队;
故答案为:乙.
【点睛】
本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
4、(1);;(2)见解析;(3)名
【分析】
(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为人,从而得出甲组满意所占总人数百分比,进而得出的值;根据中位数的计算方法得出乙组的中位数位于第和的平均数;
(2)根据平均数以及中位数进行分析即可;
(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.
【详解】
解:(1)∵甲、乙两中学“满意组”的人数一样多,
∴甲满意的人数为人,
∴甲满意的人数占甲组的百分比为:,
∴,
∴;
乙学校中位数为第名和名的平均数,
∴乙(中位数)=,
∴;
(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;
从中位数来看,乙学校的高分段人数较多;
综上:乙学校的延时服务开展得更好;
(3)甲中学70分及以上的百分比=,
(名),
答:甲中学2000名家长中认为该校延时服务合格的人数为名.
【点睛】
本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.
5、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人).
【分析】
(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;
(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;
(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.
【详解】
解:(1)结合两个图形可得:A组频数为23,所占比例为23%,
∴抽取的总人数为:(人),
∴D组所占的比例为:,
∴a的值为8;
(2)C组频数为:,
补全统计图如图所示:
(3)不少于9个小时的只有A、B两个组,总数为:,
所占比例为:,
∴估计符合要求的人数为:(人).
【点睛】
题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共19页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题,共22页。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试测试题,共23页。试卷主要包含了在频数分布表中,所有频数之和等内容,欢迎下载使用。