初中第十七章 方差与频数分布综合与测试同步达标检测题
展开京改版八年级数学下册第十七章方差与频数分布专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )
A., B., C., D.,
2、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )
A. B. C. D.
3、2020年某果园随机从甲、乙、丙、丁四个品种的苹果树上各采摘了10棵.每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如下表所示:
| 甲 | 乙 | 丙 | 丁 |
25 | 25 | 24 | 21 | |
s2 | 2.2 | 2.0 | 2.1 | 2.0 |
今年准备从这四个品种中选出一种产量既高又稳定的苹果树进行种植.应选的品种是( )
A.甲 B.乙 C.丙 D.丁
4、在频数分布直方图中,下列说法正确的是( )
A.各小长方形的高等于相应各组的频率
B.各小长方形的面积等于相应各组的频数
C.某个小长方形面积最小,说明落在这个组内的数据最多
D.长方形个数等于各组频数的和
5、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )
A.平均数、中位数和众数都是3
B.极差为4
C.方差是
D.标准差是
6、已知一组数据的方差s2=[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](a,b为常数),则a+b的值为( )
A.5 B.7 C.10 D.11
7、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中( )
| 成绩(单位:环) | ||||
甲 | 3 | 7 | 8 | 8 | 10 |
乙 | 7 | 7 | 8 | 9 | 10 |
A.甲的平均数大于乙的平均数
B.甲的中位数小于乙的中位数
C.甲的众数大于乙的众数
D.甲的方差小于乙的方差
8、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )
A.该班共有学生60人
B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内
C.某同学身高155厘米,那么班上恰有10人比他矮
D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%
9、一组数据:1,3,3,4,5,它们的极差是( )
A.2 B.3 C.4 D.5
10、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人
B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个
C.由这两个统计图不能确定喜欢“小说”的人数
D.在扇形统计图中,“漫画”所在扇形的圆心角为
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则______同学的数学成绩更稳定.
2、已知一组数据a、b、c、d、e的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.
3、已知一组数据:2,3,4,5,6,则这组数据的标准差是 __.
4、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是________,极差是________,方差是________.
5、七年级(5)班20名女生的身高如下(单位:cm):
153 156 152 158 156 160 163 145 152 153
162 153 165 150 157 153 158 157 158 158
(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 |
|
|
|
百分比 |
|
|
|
(2)上表把身高分成___组,组距是___;
(3)身高在___范围的人数最多.
三、解答题(5小题,每小题10分,共计50分)
1、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:
(收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:
甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60
乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80
(整理、描述数据)按如表分数段整理、描述这两组样本数据:
分数(分) | 40≤x<60 | 60≤x<80 | 80≤x<100 |
甲学校 | 2人 | 12人 | 6人 |
乙学校 | 3人 | 10人 | 7人 |
(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60)
(分析数据)两组样本数据的平均分、中位数、众数如表所示:
学校 | 平均分 | 中位数 | 众数 |
甲学校 | 68 | 60 | 60 |
乙学校 | 71.5 | 70 | a |
(得出结论)
(1)(分析数据)中,乙学校的众数a= .
(2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 校的学生;(填“甲”或“乙”)
(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;
(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)
2、为加强安全教育,某校开展了“预防水,珍爱生命”安全知识竞赛,现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析,部分信息如下:
a.参赛学生成绩频数分布直方图(数据分成五组:,,,,)如图所示;
b.参赛学生成绩在这一组的具体得分是:70,71,73,75,76,76,76,77,77,78,79.
c.参赛学生成绩的平均数、中位数、众数如下:
平均数 | 中位数 | 众数 |
76.9 | m | 80 |
d.参赛学生甲的竞赛成绩得分为79分.
根据以上信息,回答下列问题:
(1)在这次竞赛中,成绩在75分以上的有______人;
(2)表中m的值为______.
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.
3、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有多少人?
4、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛.某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x表示,共分为四个等级:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100);下面给出了部分信息:
七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85.
八年级D等级中全部学生的成绩为:92, 95, 98, 98, 98, 98, 98, 100, 100, 100.
七八年级抽取的学生知识竞赛成绩统计表
| 平均数 | 中位数 | 众数 | 满分率 |
七年级 | 91 | b | c | 25% |
八年级 | 91 | 87 | 98 | m% |
根据以上信息,解答下列问题:
(1)直接写出上述表中a,b,c,m的值;
(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);
(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数.
5、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.
(1)请指出条形统计图中存在的错误,并说明理由;
(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.
(3)请计算D类学生在扇形统计图中的圆心角.
-参考答案-
一、单选题
1、C
【分析】
直接利用样本容量的定义以及结合频数除以总数=频率得出答案.
【详解】
解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,
∴此抽样样本中,样本容量为:100,
不合格的频率是:=0.08.
故选:C.
【点睛】
本题主要考查了频数与频率,正确掌握频率求法是解题关键.
2、A
【分析】
首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.
【详解】
解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).
故选:A.
【点睛】
此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.
3、B
【分析】
首先比较平均数,平均数较高的是甲和乙,进而根据方差比较选出方差较小的即可.
【详解】
根据表格可知甲、乙的平均数较高,则表示产量高,比较甲、乙的方差,乙的方差比甲小,则乙品种的苹果树产量高又稳定,
故选B.
【点睛】
本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.
4、B
【分析】
根据频数直方图的定义逐一判断即可得答案.
【详解】
在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,
在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确,
在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,
在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,
故选:B.
【点睛】
本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.
5、D
【分析】
分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.
【详解】
解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;
极差为5﹣1=4,B选项不符合题意;
S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;
S=,因此D选项符合题意,
故选:D.
【点睛】
考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.
6、D
【分析】
根据方差的定义得出这组数据为6,10,a,b,8,其平均数为7,再利用平均数的概念求解可得.
【详解】
解:由题意知,这组数据为6,10,a,b,8,其平均数为7,
则×(6+10+a+b+8)=7,
∴a+b=11,
故选:D.
【点睛】
本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.
7、C
【分析】
根据题意求出众数,中位数,平均数和方差,然后进行判断即可.
【详解】
解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;
B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;
C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;
D、,,所以D选项说法错误,不符合题意.
故选C.
【点睛】
本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.
8、B
【分析】
由两幅统计图的数据逐项计算判断即可.
【详解】
解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;
根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;
根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;
根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
9、C
【分析】
根据极差的定义,即一组数据中最大数与最小数之差计算即可;
【详解】
极差是;
故选C.
【点睛】
本题主要考查了极差的计算,准确计算是解题的关键.
10、C
【分析】
根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.
【详解】
A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;
C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.
D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;
故选C.
【点睛】
本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
二、填空题
1、乙
【分析】
根据平均数相同时,方差越小越稳定可以解答本题.
【详解】
解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,,
,
乙同学的数学成绩更稳定,
故答案为:乙.
【点睛】
本题考查方差,解题的关键是明确方差越小越稳定.
2、
【分析】
根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.
【详解】
解:∵数据a、b、c、d、e的方差是1.2,
∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.
故答案为:4.8.
【点睛】
本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.
3、
【分析】
计算出平均数和方差后,再计算方差的算术平方根,即为标准差.
【详解】
解:,
,
这组数据的标准差是.
故答案为:.
【点睛】
本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根.
4、11 6 8
【分析】
根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.
【详解】
解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,
∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,
极差为2×3=6,
方差为2×22=8,
故答案为:11、6、8.
【点睛】
此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
5、3
10 150~160
【分析】
(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;
(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;
(3)根据所填信息确定身高在哪个范围的人数最多即可.
【详解】
(1)填表:
身高(cm) | 140~150 | 150~160 | 160~170 |
频数 | 1 | 15 | 4 |
百分比 | 5% | 75% | 20% |
(2)上表把身高分成3组,组距是10;
(3)身高在范围最多.
【点睛】
本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.
三、解答题
1、(1)70;(2)甲;(3)140人;(4)乙学校成绩较好,理由见详解
【分析】
(1)由众数的定义解答即可;
(2)可从中位数的角度分析即可;
(3)用总人数乘以乙校学生在这次竞赛中的成绩是优秀的人数占被调查人数的比例即可;
(4)根据平均分和中位数乙校高于甲校即可判断.
【详解】
解:(1)乙校的20名同学的成绩中70分出现的次数最多,
∴乙学校的众数a=70,
故答案为:70
(2)甲校的中位数为60,小明的同学的成绩高于此学校的中位数,
∴小明是甲校的学生;
故答案为:甲.
(3)400×=140(人)
∴估计乙校学生在这次竞赛中的成绩是优秀的人数有140人.
(4)∵乙校的平均分高于甲校的平均分,且乙校的中位数70高于甲校的中位数,说明乙校分数不低于70分的人数比甲多,
∴乙校的成绩较好.
【点睛】
本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.
2、(1)30;(2)77.5;(3)810
【分析】
(1)参赛学生成绩频数分布直方图,可得75分以上的有 人,即可求解;
(2)根据题意可得位于第25位,第26位的分别为77、78,即可求解;
(3)用1500乘以成绩超过平均数76.9分的人数所占的百分比,即可求解.
【详解】
(1)在这次竞赛中,成绩在75分以上的有 人;
(2)∵位于第25位,第26位的分别为77、78,
∴中位数为 ,
即表中m的值为77.5;
(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数:(人),
答:估计成绩超过平均数76.9分的人数是810人.
【点睛】
本题主要考查了频数分布直方图,求中位数,用样本估计总体,明确题意,能从频数分布直方图获取准确信息是解题的关键.
3、(1)100;(2)见解析;(3)600
【分析】
(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;
(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;
(3)利用样本估计总体即可估计爱好运动的学生人数.
【详解】
解:(1)爱好运动的人数为,所占百分比为
共调查人数为:,
故答案为:;
爱好上网的人数所占百分比为
爱好上网人数为:,
爱好阅读人数为:,
补全条形统计图,如图所示,
(3)爱好运动的学生人数所占的百分比为,
估计爱好运用的学生人数为:,
故答案为:;
【点睛】
本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.
4、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人.
【分析】
(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去B、C、D所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;
(2)根据中位数,满分率解答即可;
(3)总人数乘以90分(包含90分)以上人数所占比例即可
【详解】
解:(1)∵七年级C等有10人,
∴C等所占比例为×100%=25%,
∴a%=1-20%-45%-25%=10%,
∴a=10,
七年级A等有:40×10%=4(人),B等有:40×20%=8(人),
把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的是第20名和第21名的成绩,分别是89,89,
∴中位数b=89;
∵七年级满分人数为:40×25%=10(人),
∴众数c=100;
八年级满分率为:×100%=7.5%,
∴m=7.5;
(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;
(3)1800×45%+250××100%≈873(人),
答:估计两个年级此次知识竞赛中优秀的人数约为873人.
【点睛】
本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键.
5、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为.
【分析】
(1)依次计算每一项正确的数量,即可判断条形统计图的错误;
(2)利用样本估计总体的思想解决问题即可;
(3)用360°乘以“D”类人数所占比例即可;.
【详解】
解:(1)C项错误,学生数应为12,理由如下:
A类学生数是:,
B类学生数是:,
C类学生数是:,
D类学生数是:,
所以,C项错误,学生数应为12.
(2)该校有3000名学生,估计学生阅读量为B类人数:(人).
所以,该校有3000名学生,估计全校共1200学生阅读量为B类.
(3)D类学生在扇形统计图中的圆心角:.
所以,D类学生在扇形统计图中的圆心角为.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题: 这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共19页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试精练: 这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试精练,共20页。试卷主要包含了下列说法中正确的是.,数学老师将本班学生的身高数据,2020年某果园随机从甲等内容,欢迎下载使用。
数学八年级下册第十七章 方差与频数分布综合与测试练习: 这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习,共21页。试卷主要包含了一组数据等内容,欢迎下载使用。