数学九年级下册第24章 圆综合与测试测试题
展开沪科版九年级数学下册第24章圆专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下面的图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为( )
A.3 B. C. D.
3、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
4、下列图形中,既是中心对称图形又是抽对称图形的是( )
A. B. C. D.
5、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是( )
A.AM=BM B.CM=DM C. D.
6、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
7、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
8、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3π B.6π C.12π D.18π
9、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
10、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.
2、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.
3、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
4、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
5、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________
三、解答题(5小题,每小题10分,共计50分)
1、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.
(1)若,求的度数;
(2)若,求的大小;
(3)猜想CF,BF,AF之间的数量关系,并证明.
2、在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于r(r为常数),到点O的距离等于r的所有点组成图形G,ABC的平分线交图形G于点D,连接AD,CD.求证:AD=CD.
3、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
4、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.
5、请阅读下列材料,并完成相应的任务:
阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦),, 是的中点,则从向所作垂线的垂足是折弦的中点,即.
下面是运用“截长法”证明的部分证明过程.
证明:如图2,在上截取,连接和.
是的中点,
…
任务:
(1)请按照上面的证明思路,写出该证明部分;
(2)填空:如图3,已知等边内接于,,为上一点,,于点,则的周长是_________.
-参考答案-
一、单选题
1、A
【详解】
解:A、既是轴对称图形又是中心对称图形,此项符合题意;
B、是中心对称图形,不是轴对称图形,此项不符题意;
C、是轴对称图形,不是中心对称图形,此项不符题意;
D、是轴对称图形,不是中心对称图形,此项不符题意;
故选:A.
【点睛】
本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
2、A
【分析】
分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.
【详解】
解:连接BO,并延长交⊙O于D,连结DC,
∵∠A=30°,
∴∠D=∠A=30°,
∵BD为直径,
∴∠BCD=90°,
在Rt△BCD中,BC=3,∠D=30°,
∴BD=2BC=6,
∴OB=3.
故选A.
【点睛】
本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.
3、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、B
【详解】
解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.既是轴对称图形,也是中心对称图形,故此选项符合题意;
.是轴对称图形,不是中心对称图形,故此选项不符合题意;
.不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:B.
【点睛】
本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
【详解】
解:∵弦AB⊥CD,CD过圆心O,
∴AM=BM,,,
即选项A、C、D选项说法正确,不符合题意,
当根据已知条件得CM和DM不一定相等,
故选B.
【点睛】
本题考查了垂径定理,解题的关键是掌握垂径定理.
6、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
8、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
9、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
10、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
二、填空题
1、5
【分析】
直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:根据直角三角形斜边上的中线等于斜边的一半,
即可知道点到点A,B,C的距离相等,
如下图:
,
,
故答案是:5.
【点睛】
本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
2、或
【分析】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.
【详解】
设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,
如图所示:
∵,
∴,,
∵点A绕点G顺时针旋转90°后得到点,
∴,,
∴,
∵轴,轴,
∴,
∴,
∴,
在与中,
,
∴,
∴,,
∴,
∴,
在中,由勾股定理得:,
解得:或,
∴或.
故答案为:,.
【点睛】
本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.
3、
【分析】
已知扇形的圆心角为,半径为2,代入弧长公式计算.
【详解】
解:依题意,n=,r=2,
∴扇形的弧长=.
故答案为:.
【点睛】
本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.
4、3
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
5、
【分析】
由勾股定理求得圆锥母线长为,再由圆锥的侧面积公式即可得出圆锥侧面积为.
【详解】
∵是一个圆锥在某平面上的正投影
∴为等腰三角形
∵AD⊥BC
∴
在中有
即
由圆锥侧面积公式有.
故答案为:。
【点睛】
本题考查了计算圆锥的侧面积,若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为,圆锥的侧面积为.
三、解答题
1、(1)20°;(2);(3)AF= CF+BF,理由见解析
【分析】
(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
(2)同(1)求解即可;
(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
【详解】
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
∴,
∴∠CBF=∠ABE-∠ABC=20°;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,,AC=AE,
∴ ,AB=AE,
∴,
∴;
(3)AF= CF+BF,理由如下:
如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠AFE=∠AFC,
∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
∴∠BFD=∠ACD=60°,
∴∠AFE=∠AFC=60°,
∴∠BFC=120°,
∴∠BAC+∠BFC=180°,
∴∠ABF+∠ACF=180°,
∴∠ACG+∠ACF=180°,
∴F、C、G三点共线,
∴△AFG是等边三角形,
∴AF=GF=CF+CG=CF+BF.
【点睛】
本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
2、见解析
【分析】
由题意画图,再根据圆周角定理的推论即可得证结论.
【详解】
证明:根据题意作图如下:
∵BD是圆周角ABC的角平分线,
∴∠ABD=∠CBD,
∴,
∴AD=CD.
【点睛】
本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.
3、
(1)见解析
(2)3,2
【分析】
(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
(1)
证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)
∵OE∥BC,
∴,
∵CD=4,CE=6,
∴,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC=,
∴tan∠OCB=tan∠EOC=2.
【点睛】
本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键.
4、2+
【分析】
连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
【详解】
解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.
∵∠AOB=90°,
∴AB是直径,
∵A(-4,0),B(0,2),
∴,
∵∠AMC=2∠AOC=120°,
,
在Rt△COH中,,
,
在Rt△ACH中,AC2=AH2+CH2,
∴,
∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
∴OC=2+,
故答案为:2+.
【点睛】
本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
5、
(1)证明见解析;
(2).
【分析】
(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;
(2)首先证明,进而得出,以及,进而求出的长即可得出答案.
(1)
证明:如图2,在上截取,连接,,和.
是的中点,
.
在和中
,
,
,
又,
,
;
(2)
解:如图3,截取,连接,,,
由题意可得:,
∵
∴,
在和中
,
,
,
,
,则,
,
,
∵,
∴
则
故答案为:.
【点睛】
此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.
初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共31页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
2020-2021学年第24章 圆综合与测试课后练习题: 这是一份2020-2021学年第24章 圆综合与测试课后练习题,共26页。
初中数学沪科版九年级下册第24章 圆综合与测试达标测试: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共35页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。