北京课改版八年级下册第十六章 一元二次方程综合与测试练习
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共15页。试卷主要包含了一元二次方程的根的情况是,关于x的一元二次方程,方程x2=4x的解是,一元二次方程的两个根是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、解一元二次方程x2-6x-4=0,配方后正确的是( )A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=132、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.C. D.3、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-44、一元二次方程的根的情况是( )A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根5、某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )A.6 B.5 C.4 D.36、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a的值为( )A.1 B.-1 C.1或-1 D.07、方程x2=4x的解是( )A.x=4 B.x=2 C.x=4或x=0 D.x=08、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.无法判断9、一元二次方程的两个根是 ( )A., B., C., D.,10、用配方法解方程x2+4x=1,变形后结果正确的是( )A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.2、已知关于x方程的一个根是1,则m的值等于______.3、若(m+1)xm(m-2) -1+2mx-1=0是关于x的一元二次方程,则m的值是________.4、若关于x的一元二次方程x2﹣m=0的一个解为3,则m的值为___.5、已知中,,,,则的面积是________.三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1);(2).2、某市尊师重教,市委、市政府非常重视教育,将教育纳入质量强市考核,近几年全市公共预算教育支出逐年增长.已知2019年教育支出约80亿元,2021年教育支出约为96.8亿元,求2019年到2021年教育支出的年平均增长率.3、某超市购进一批进价为每个15元的水杯,按每个25元售出.已知该超市平均每天可售出60个水杯,后来经过市场调查发现,单价每降低1元,则平均每天的销量可增加10个.为尽快减少库存,该超市将水杯售价进行调整,结果当天销售水杯获利630元,问该水杯调整后的售价为每个多少元?4、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.5、解方程:. -参考答案-一、单选题1、D【分析】根据配方法即可求出答案.【详解】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,∴x2﹣6x+9=13,∴(x﹣3)2=13,故选D.【点睛】本题考查了配方法解方程,注意配方时先把常数项移到右边,然后把二次项系数化为1,最后等号两面同时加上一次项系数一半的平方.2、B【分析】根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可【详解】解:设道路宽为xm,则根据题意可列方程为故选B【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.3、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.4、D【分析】先求出Δ的值,再判断出其符号即可.【详解】解:∵ ∴Δ=b2−4ac=12−4×1×(-3)=13>0,∴方程有两个不相等的实数根.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac的关系是解答此题的关键.5、A【分析】设共有x个班级参赛,根据第一个球队和其他球队打场球,每个球队都打场球,并且都重复一次,根据计划安排15场比赛即可列出方程求解.【详解】解:设共有x个班级参赛,根据题意得:,解得:,(不合题意,舍去),则共有6个班级参赛,故选:A.【点睛】本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.6、B【分析】根据一元二次方程的定义和一元二次方程的解的定义得出a-1≠0,a2-1=0,求出a的值即可.【详解】解:根据题意将x=0代入方程可得:a2-1=0,解得:a=1或a=-1,∵a-1≠0,即a≠1,∴a=-1,故选:B.【点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a-1≠0且a2-1=0,题目比较好,但是一道比较容易出错的题.7、C【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【详解】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4故选:C.【点睛】本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.8、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4ac,∵ac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.9、C【分析】分别令和,即可求出该方程的两个根.【详解】解:由可知:或,方程的解为:,故选:C.【点睛】本题主要是考查了一元二次方程的求解,一定要熟练掌握两项乘积为的一元二次方程的求解:令每一项都为0,即可求出该方程的两个根.10、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1即故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.二、填空题1、14【分析】根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可.【详解】解:设每天一人传染了x人,则依题意得1+x+(1+x)×x=225,(1+x)2=225,∵1+x>0,∴1+x=15,x=14.答:每天一人传染了14人.【点睛】此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225.2、2【分析】把方程的根代入原方程,求解即可.【详解】解:因为关于x方程的一个根是1,所以,,解得,,故答案为:2.【点睛】本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.3、3【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】解:∵是关于x的一元二次方程,∴,即,解得m=3.故答案为:3.【点睛】本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义.4、9【分析】根据一元二次方程的解定义,代入即可求得的值.【详解】解:把x=3代入x2﹣m=0得9﹣m=0,解得m=9.故答案为9.【点睛】本题考查了一元二次方程的解,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.5、或【分析】如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,∴∠CEB=∠CEA=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=2BE,∴,设,则,,∵,∴,解得或,∴或,∴或,故答案为:或.【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.三、解答题1、(1),;(2),.【分析】(1)两边同除以3,然后直接开平方法进行求解即可;(2)根据公式法可直接进行求解.【详解】解:(1),∴,∴,;(2)∵,∴,∴,∴,.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.2、2019年到2021年教育支出的年平均增长率为10%.【分析】设2019年到2021年教育支出的年平均增长率为x,则2020年教育支出为, 2021年教育支出为,再由2021年教育支出约为96.8亿元,列方程,再解方程可得答案.【详解】解:设2019年到2021年教育支出的年平均增长率为x,由题意得:, ,解得,(舍)答:2019年到2021年教育支出的年平均增长率为10%.【点睛】本题考查的是一元二次方程的应用,掌握“两次变化后的量=原来的量(1+平均增长率)2”是解题的关键.3、该水杯调整后的售价为每个22元.【分析】设该水杯调整后的售价为每个x元,等量关系每个利润×销售水杯个数=总利润,列方程得,解方程即可.【详解】解:设该水杯调整后的售价为每个x元,根据题意得:,整理得,因式分解得,解得,经检验都是原方程的解,为尽快减少库存,∴.答该水杯调整后的售价为每个22元.【点睛】本题考查列一元二次方程解应用题,掌握列一元二次方程解应用题的方法与步骤,抓住等量关系每个利润×销售水杯个数=总利润列方程是解题关键.4、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【详解】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.5、或【分析】利用十字相乘因式分解,进而即可求解.【详解】,,∴或,解得:或.【点睛】本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键.
相关试卷
这是一份北京课改版第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了若方程的一个根为,则的值是等内容,欢迎下载使用。
这是一份初中数学第十六章 一元二次方程综合与测试课后练习题,共15页。试卷主要包含了不解方程,判别方程的根的情况是,一元二次方程的解为等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共16页。