初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共17页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:①当a<0,且b>a+c时,方程一定有实数根;②若ac<0,则方程有两个不相等的实数根;③若a-b+c=0,则方程一定有一个根为-1;④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.其中正确的有( )A.①②③ B.①②④ C.②③ D.①②③④2、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,53、若关于x的一元二次方程的一根为1,则k的值为( ) .A.1 B. C. D.04、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )A.①⑤ B.① C.④ D.①④5、已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是( )A.﹣2 B.2 C.﹣1 D.16、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.47、已知关于x的一元二次方程:x2﹣2x+m=0有两个不相等的实数根x1,x2,则( )A.x1+x2<0 B.x1x2<0 C.x1x2>﹣1 D.x1x2<18、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )A. B.C. D.9、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-410、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.无法判断第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程的一个根是m,则的值为______.2、若,则关于的一元二次方程必有一个根为______.3、某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比1月份的利润增加4.2万元,设该产品利润平均每月的增长率为x,则可列方程为___.4、某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x,则由题意可列方程为 ________________,可得x=____.5、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值.,请从一元二次方程的两个根中选择一个你喜欢的求值.2、解方程: (1)4(x﹣1)2=9; (2)x2+8x+15=0;(3)25x2+10x+1=0; (4)x2﹣3x+1=0.3、已知关于x的一元二次方程.(1)求证:无论k取何值,该方程总有实数根;(2)已知等腰三角形的一边a为2,另两边恰好是这个方程的两个根,求k的值.4、2021年是中欧班列开通十周年.某地自开通中欧班列以来,逐渐成为我国主要的集贸区域之一.2019年该地中欧班列的开行量为500列,2021年达到1280列.求该地这两年中欧班列开行量的年平均增长率.5、某地区2019年投入教育经费2500万元,2021年投入教育经费3025万元.求2019年至2021年该地区投入教育经费的年平均增长率. -参考答案-一、单选题1、C【分析】①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.【详解】①由当,,,,方程此时没有实数根,故①错误;②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;③令得,则方程一定有一个根为;③正确;④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.故选:C.【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.2、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.3、B【分析】把方程的根代入方程可以求出k的值.【详解】解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键.4、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;②,不是方程,不符合题意;③,不是整式方程,不符合题意;⑤,是二元一次方程,不符合题意;⑤,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.5、D【分析】用根与系数的关系可用k表示出已知等式,可求得k的值.【详解】解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,故选:D.【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.6、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.7、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案.【详解】解:由题意可知:两根之和:,故A错误,x2﹣2x+m=0有两个不相等的实数根,,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D.【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键.8、C【分析】根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.【详解】解:根据题意,得:,故选:C.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.9、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.10、B【分析】判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.【详解】解:∵关于x的一元二次方程为ax2+bx+c=0,∴Δ=b2﹣4ac,∵ac<0,∴﹣ac>0,又∵b2≥0,∴Δ>0,∴方程有两个不相等的实数根.故选B.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.二、填空题1、-2011【分析】由关于x的一元二次方程的一个根是m,可得,再由求解即可.【详解】解:∵关于x的一元二次方程的一个根是m,∴,∴,∴.故答案为:-2011.【点睛】本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.2、【分析】由a﹣b+c=0可得b=a+c,然后将b=a+c带入方程,最后用因式分解法解一元二次方程即可.【详解】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故答案是:-1.【点睛】本题主要考查了解一元二次方程,灵活运用因式分解法解一元二次方程成为解答本题的关键.3、20(1+x)2=20+4.2【分析】根据该公司销售该种产品1月份及3月份获得的利润,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:20(1+x)2=20+4.2,故答案为:20(1+x)2=20+4.2.【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4、100(1﹣x)2=81 10% 【分析】设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.【详解】解:根据题意得:100(1﹣x)2=81,解得:x=0.1=10%或x=1.1(舍去),故答案为:100(1﹣x)2=81,10%.【点睛】本题考查一元二次方程解降价的百分率问题,掌握一元二次方程解降价的百分率问题的方法与步骤是解题关键.5、3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.【详解】解:由题意得:,解得,且,为整数,整数的最大值为3,故答案为:3.【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.三、解答题1、;【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用因式分解法解一元二次方程求出a的值,继而选择任意一个a的值代入计算即可.【详解】解: ÷(+3 +)= ÷= •= •= 2-7+12=0∙=0 ∴或 = 0∴,= 又∵,, ∴当时,原式【点睛】本题主要考查分式的化简求值和解一元二次方程,解题的关键是掌握分式的混合运算顺序和运算法则及因式分解法解一元二次方程.2、(1),;(2),;(3);(4),.【分析】(1)先变形,然后运用直接开方法求解即可;(2)直接应用因式分解法求解即可;(3)将其变形为完全平方式,然后运用直接开方法即可得;(4)直接运用公式法求解即可得.【详解】解:(1)方程变形得:,开方得:,解得:,;(2)分解因式得:,可得或,解得:,;(3)方程变形得:,解得:;(4)这里,,,∵,∴∴,.【点睛】题目主要考查解一元二次方程的方法:直接开方法、因式分解法、公式法,熟练掌握运用解方程的方法是解题关键.3、(1)证明见解析;(2)k=3【分析】(1)根据根的判别式判断即可.(2)由等腰三角形性质可判断出腰长为2和底为2两种情况,即可求得两个k,将k代入抛物线解析式求得x的解,再结合三角形三边关系判断即可.【详解】(1)∵中a=1,b=-k,c=k-1∴∵∴∴无论k取何值,该方程总有实数根(2)若2为等腰三角形的腰,则另一边也为2,即2为方程的一个根将x=2代入有4-2k+k-1=0解得k=3则方程为解得等腰三角形三边长为2,2,1,符合三角形三边关系.若2为等腰三角形的底,则两根为腰且相等,有即解得k=2则方程为解得等腰三角形三边长为2,1,1,1+1=2,不符合三角形三边关系,故k=2舍去.综上所述k的值为3.【点睛】本题考查了一元二次方程根的判别式、等腰三角形性质以及三角形三边成立的关系,易错点为第二问未验证所算三边长是否能构成等腰三角形.4、该地这两年中欧班列开行量的年平均增长率为60%.【分析】根据题意,2019年该地中欧班列的开行量为500列,2021年达到1280列,设该地这两年中欧班列开行量的年平均增长率为x,列出一元二次方程求解即可得.【详解】解:设该地这两年中欧班列开行量的年平均增长率为x,根据题意可得:,解得:或(舍去),∴该地这两年中欧班列开行量的年平均增长率为60%.【点睛】题目主要考查一元二次方程的应用,理解题意,列出方程是解题关键.5、这两年投入教育经费的年平均增长率为【分析】根据等量关系:2019年投入教育经费×(1+x)2=2021年投入教育经费列方程求解即可.【详解】解:设2019年至2021年该地区投入教育经费的年平均增长率为,根据题意,得,解得:,或(不合题意舍去),答:这两年投入教育经费的年平均增长率为.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练,共16页。试卷主要包含了一元二次方程的根的情况是,下列所给方程中,没有实数根的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题,共16页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共17页。试卷主要包含了用配方法解方程,则方程可变形为,已知方程的两根分别为m,小亮,一元二次方程的二次项系数等内容,欢迎下载使用。