初中数学第十六章 一元二次方程综合与测试课后测评
展开
这是一份初中数学第十六章 一元二次方程综合与测试课后测评,共17页。试卷主要包含了若方程的一个根为,则的值是,已知方程的两根分别为m,若a是方程的一个根,则的值为,一元二次方程的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中,是一元二次方程的个数有( )(1)x2+2x+1=0;(2)++2=0;(3)x2-2x+1=0;(4)(a-1)x2+bx+c=0;(5)x2+x=4-x2.A.2个 B.3个 C.4个 D.5个2、一元二次方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.无实数根3、下列方程中是一元二次方程的是( )A.2x+1=0 B.y2+x=1 C.x2+1=0 D.4、若方程的一个根为,则的值是( )A.7 B. C.4 D.5、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=06、如图,在一块长为30m,宽为20m的矩形地面上,要修建同样宽的两条互相垂直的道路,剩余部分种上草坪,使草坪面积为300m2,若设道路宽为xm,则根据题意可列方程为( )
A. B.C. D.7、已知方程的两根分别为m、n,则的值为( )A.1 B. C.2021 D.8、若a是方程的一个根,则的值为( )A.2020 B. C.2022 D.9、一元二次方程的解是( )A. B.C., D.10、已知m,n是一元二次方程的两个实数根,则的值为( ).A.4 B.3 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.2、若关于x的一元二次方程有两个实数根,则m 的取值范围是______________.3、若关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,则实数k的取值范围是 _____.4、若(m+1)xm(m-2) -1+2mx-1=0是关于x的一元二次方程,则m的值是________.5、关于x的一元二次方程的两实数根,,满足,则m的值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,在∆ABC中,∠B=90°,AB=5cm,BC=7cm.动点P、Q分别从点A,B同时出发,点P以1cm/s的速度向点B移动,点Q以2cm/s的速度向点C移动.(不考虑起始位置,且点P,Q不与点A,B重合)(1)P、Q两点出发后第几秒时,∆PBQ的面积为4cm2?(2)P、Q两点出发后第几秒时,PQ的长度为5cm;(3)∆PBQ的面积能否为7cm2?说明理由.2、解方程:3、如图,在一块长、宽的矩形地面内,修筑一横两竖三条道路,横、竖道路的宽度相同,余下的地面铺草坪,要使草坪面积达到,求道路的宽.4、解分式方程:5、用适当的方法解下列方程:(1)(x﹣1)2=9;(2)x2+4x﹣1=0.(3)3(x﹣5)2=4(5﹣x).(4)x2﹣4x+10=0. -参考答案-一、单选题1、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可.【详解】解:(1)是一元二次方程; (2)不是一元二次方程;(3)是一元二次方程;(4),的值不确定,不是一元二次方程;(5)是一元二次方程,共3个,故选:B.【点睛】题目主要考查一元二次方的定义,深刻理解这个定义是解题关键.2、D【分析】根据一元二次方程根的判别式解题.【详解】解:所以此方程无解,故选:D.【点睛】本题考查一元二次方程根的判别式,是重要考点,,方程有两个不相等的实数根;方程有两个相等的实数根;方程无解.3、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.4、D【分析】将代入方程求解即可.【详解】解:将代入可得:,解得:,故选:D.【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键.5、B【分析】先用表示出矩形挂图的长和宽,利用面积公式,即可得到关于的方程.【详解】解:由题意可知:挂图的长为,宽为,, 化简得:x2+65x﹣350=0,故选:B.【点睛】本题主要是考查了一元二次方程的实际应用,熟练根据等式列出对应的方程,是解决该类问题的关键.6、B【分析】根据题意草坪的长为m,宽为m,根据长方形的面积公式列出一元二次方程即可【详解】解:设道路宽为xm,则根据题意可列方程为故选B【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.7、B【分析】由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.【详解】∵方程x2﹣2021x+1=0的两根分别为m,n,∴mn=1,m2﹣2021m+1=0,∴m2﹣2021m=﹣1,∴m2﹣=﹣1,故选:B.【点睛】本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.8、C【分析】先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,,,,.故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.9、C【分析】根据因式分解法解一元二次方程即可.【详解】解:即或解得,故选C【点睛】本题考查了因式分解法解一元二次方程,掌握解一元二次方程的方法是解题的关键.10、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解.【详解】解:∵m、n是一元二次方程的两个实数根,∴m+n=4.故选:A.【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.二、填空题1、14【分析】根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可.【详解】解:设每天一人传染了x人,则依题意得1+x+(1+x)×x=225,(1+x)2=225,∵1+x>0,∴1+x=15,x=14.答:每天一人传染了14人.【点睛】此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225.2、【分析】根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围【详解】解:关于x的一元二次方程有两个实数根,=解得故答案为:【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.3、 且【分析】利用一元二次方程根的判别式,即可求解.【详解】解:∵关于x的方程(k﹣1)x2+2kx+k=0有两个不相等的实数根,∴且 ,解得: 且 .故答案为: 且【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键.4、3【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【详解】解:∵是关于x的一元二次方程,∴,即,解得m=3.故答案为:3.【点睛】本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义.5、2【分析】先根据根的判别式求得m的取值范围,然后根据一元二次方程根与系数的关系得到x1x2=m2−m=2,进而求得m=2或m=−1,故可得解.【详解】解:由题意得Δ=(2m)2−4(m2−m)≥0,∴m≥0,∵关于x的一元二次方程的两实数根,,则x1x2=m2−m=2,∴m2−m−2=0,解得m=2或m=−1(舍去),故答案为:2.【点睛】本题考查的是解一元二次方程和一元二次方程根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1x2=.三、解答题1、(1)1秒后,△PBQ的面积等于4cm2;(2)2秒后,PQ的长度等于5cm;(3)△PBQ的面积不能等于7cm2.理由见解析【分析】(1)根据题意表示出BP、BQ的长,再根据三角形的面积公式列方程即可;(2)根据题意表示出BP、BQ的长,再根据勾股定理列方程即可;(3)根据三角形的面积公式,列出方程,再利用判别式,即可求解.【详解】解:根据题意,知BP=AB-AP=5-t,BQ=2t.(1)设t秒后,△PBQ的面积等于4cm2,根据三角形的面积公式,得PB•BQ=4,t(5-t)=4,t2-5t+4=0,解得t=1秒或t=4秒(舍去).故1秒后,△PBQ的面积等于4cm2;(2)设t秒后,PQ的长度等于5cm,根据勾股定理,得PQ2=BP2+BQ2=(5-t)2+(2t)2=25,5t2-10t=0,∵t≠0,∴t=2.故2秒后,PQ的长度等于5cm;(3)根据三角形的面积公式,得PB•BQ=7,t(5-t)=7,t2-5t+7=0,△=(-5)2-4×1×7=-3<0.故△PBQ的面积不能等于7cm2.【点睛】本题考查了一元二次方程的应用,此题要能够正确找到点所经过的路程,熟练运用勾股定理和直角三角形的面积公式列方程求解.2、 【分析】直接用公式法求解即可.【详解】∴∴,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3、道路的宽为2m【分析】设道路的宽为xm,根据图形可以把草坪面积看做是一个长为m,宽为m的长方形面积,由此建立方程求解即可.【详解】解:设道路的宽为xm,由题意得:,∴,∴,∴,解得或(舍去),∴道路的宽为2m.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.4、x=4【分析】两边都乘以x2-4化为整式方程求解,然后验根即可.【详解】解:,两边都乘以x2-4,得2(x-2)-4x=-(x2-4),x2-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,检验:当x=-2时,x2-4=0,当x=4时,x2-4≠0,∴x=4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.5、(1)x1=4,x2=﹣2(2)(3)(4)【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(4)先判断是否有解,若有解,可直接利用公式法求解即可.(1)解:(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,∴x1=4,x2=﹣2.(2)解:x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=或x+2=﹣,∴x1=﹣2+,x2=﹣2﹣.(3)解:∵3(x﹣5)2=4(5﹣x),∴3(x﹣5)2+4(x﹣5)=0,∴(x﹣5)(3x﹣11)=0,则x﹣5=0或3x﹣11=0,解得x1=5,x2=.(4)解:∵a=1,b=﹣4,c=10,∴Δ=(﹣4)2﹣4×1×10=8>0,∴x===2±,∴,.【点睛】本题考查了一元二次方程的解法,要根据不同的方程采取不同的方法,解题时要先判断方程是否有根.
相关试卷
这是一份数学八年级下册第十六章 一元二次方程综合与测试课堂检测,共16页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共19页。试卷主要包含了下列所给方程中,没有实数根的是,如图,某学校有一块长35米等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了一元二次方程根的情况是,下列方程中是一元二次方程的是等内容,欢迎下载使用。