搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十六章一元二次方程专题测试练习题(无超纲)

    2022年京改版八年级数学下册第十六章一元二次方程专题测试练习题(无超纲)第1页
    2022年京改版八年级数学下册第十六章一元二次方程专题测试练习题(无超纲)第2页
    2022年京改版八年级数学下册第十六章一元二次方程专题测试练习题(无超纲)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题

    展开

    这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共19页。试卷主要包含了若a是方程的一个根,则的值为等内容,欢迎下载使用。
    京改版八年级数学下册第十六章一元二次方程专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若是关于的方程的一个根,则的值是(    A. B. C.1 D.22、下列方程中是一元二次方程的是(     A.y+2=1 B.=0 C. D.3、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为(    A. B. C. D.4、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2,x2=4,则m-n的值是(    A.-10 B.10 C.-6 D.65、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于(  )A.2015 B.2017 C.2019 D.20226、若a是方程的一个根,则的值为(    A.2020 B. C.2022 D.7、一个矩形的长是宽的3倍,若把它的长、宽分别加1后,面积增加了9,求原矩形的长与宽.若设原矩形的宽为,可列方程为(    A. B. C. D.8、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是(  )A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠09、将一元二次方程通过配方转化为的形式,下列结果中正确的是(    A. B. C. D.10、用配方法解方程x2+4x=1,变形后结果正确的是(    A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若关于的一元二次方程有一个根为0,则________.2、小华在解一元二次方程x2=6x时,只得出一个根是x=6,则被他漏掉的一个根是x=______.3、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 4、已知实数ab满足条件a2﹣7a+2=0,b2﹣7b+2=0(ab),则a+b=_____.5、若关于x的一元二次方程有两个实数根,则m 的取值范围是______________.三、解答题(5小题,每小题10分,共计50分)1、中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均年收入20000元,到2019年人均年收入达到28800元.假设该地区居民年人均收入平均增长率都相同.(1)求该地区居民年人均收入平均增长率;(2)请你预测该地区2022年人均年收入.2、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).(1)求直线l1l2的表达式;(2)点C为直线OB上一动点(点C不与点OB重合),作CDy轴交直线l2于点D,过点CD分别向y轴作垂线,垂足分别为FE,得到矩形CDEF①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);②若矩形CDEF的面积为48,请直接写出此时点C的坐标.3、某超市购进一批进价为每个15元的水杯,按每个25元售出.已知该超市平均每天可售出60个水杯,后来经过市场调查发现,单价每降低1元,则平均每天的销量可增加10个.为尽快减少库存,该超市将水杯售价进行调整,结果当天销售水杯获利630元,问该水杯调整后的售价为每个多少元?4、先化简,再求值.,请从一元二次方程的两个根中选择一个你喜欢的求值.5、(1)计算:(2)计算:(3)解方程:(4)解方程: -参考答案-一、单选题1、A【分析】n代入方程,然后提公因式化简即可.【详解】解:∵是关于x的方程的根,,即,即故选:A.【点睛】本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.2、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.【详解】解:A.是二元二次方程,故本选项不合题意; B.是一元二次方程,故本选项符合题意;C.是二元二次方程,故本选项不合题意;D.当a=0时,不含二次项,故本选项不合题意;故选:B【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.【详解】解:根据题意,∵解得:故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.4、D【分析】根据一元二次方程x2+mx+n=0的两个实数根分别为x1=2、x2=4结合根与系数的关系,分别求出mn的值,最后代入m-n即可解答.【详解】解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-2、x2=4,x1+x2=﹣m=-2+4,解得:m=﹣2,x1x2n=-2×4,解得:n=-8,m-n=﹣2-(-8)=6.故选D.【点睛】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系求出mn的值是解答本题的关键.5、B【分析】根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】解:将代入方程ax2+bx﹣2=0可得,即2021﹣2a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.6、C【分析】先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.7、C【分析】分别用表示出长宽增加前后的矩形面积,然后作差即可得到所求方程.【详解】解:由题意可知,长宽增加前的矩形面积为:长宽增加后的矩形面积为:根据已知条件可得方程:故选:C.【点睛】本题主要是考查了一元二次方程的实际应用,熟练利用表示出对应图形的面积,这是解决与面积相关的应用题的关键.8、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.【详解】解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;②当时,此方程是一元二次方程,可得k≠0且Δ=(-4)2-4 k×(-2)≥0,解得k≥-2且k≠0.综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.9、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,即故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.二、填空题1、1或-1或1【分析】x=1代入方程求解即可.【详解】解:将x=1代入方程得到解得m=1或-1故答案为:1或-1.【点睛】此题考查了一元二次方程的解,已知方程的解时应将解代入方程求某字母系数的值.2、0【分析】由因式分解法解一元二次方程步骤因式分解即可求出.【详解】原式为x2=6x移项得x2-6x=0化积为xx-6)=0转化得x=0,x-6=0解得x=0,x=6故答案为:0.【点睛】因式分解法解一元二次方程的一般步骤:移项→将方程的右边化为零;化积→把方程的左边分解为两个一次因式的积; 转化→令每个因式分别为零,转化成两个一元一次方程;求解→解这两个一元一次方程,它们的解就是原方程的解.3、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x
    x2-3x=0,

    x=0或x-3=0,
    x1=0,x2=3,
    故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.4、7【分析】利用一元二次的求根公式可得答案.【详解】解:由实数ab分别满足a2-7a+2=0,b2-7b+2=0,可得ab分别是方程x2-7x+2=0的两个不等实数根,由根与系数的关系可得a+b=7,故答案为:7.【点睛】本题考查了根与系数的关系,属于基础题,关键是把ab看成方程的两个根后再根据根与系数的关系解题.5、【分析】根据一元二次方程 (为常数)的根的判别式,解不等式即可求得m 的取值范围【详解】解:关于x的一元二次方程有两个实数根,=解得故答案为:【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.三、解答题1、(1)20%;(2)49766.4元【分析】(1)设该地区居民年人均收入平均增长率为x,则2019年人均年收入可以表示为: 再列方程解方程即可;(2)2022年人均年收入可以表示为28800×(1+0.2)3,再计算即可.【详解】解:(1)设该地区居民年人均收入平均增长率为x20000(1+x2=28800,解得,x1=0.2,x2=﹣2.2(舍去),∴该地区居民年人均收入平均增长率为20% (2)28800×(1+0.2)3=49766.4(元)答:该地区2022年人均年收入是49766.4元.【点睛】本题考查的是一元二次方程的应用,掌握“利用一元二次方程解决增长率问题”是解本题的关键.2、(1)y=﹣xyx+12;(2)①(﹣3n,﹣3n+12);②(3,﹣1)或C(﹣12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点AB的坐标,用待定系数法即可求得l1l2的解析式;(2)①已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;②根据点C与点D坐标,求出CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,利用矩形的面积=长×宽,列出关于n的方程,解方程即可.【详解】解:(1)设直线l1的表达式为yk1x∵过点B(﹣9,3),∴﹣9k1=3,解得:k1=﹣∴直线l1的表达式为y=﹣x设直线l2的表达式为yk2x+b∵过点A (0,12),B(﹣9,3),解得:∴直线l2的表达式yx+12;(2)①∵点C在直线l1上,且点C的纵坐标为nn=﹣x解得:x=﹣3n∴点C的坐标为(﹣3nn),CDy轴,∴点D的横坐标为﹣3n∵点D在直线l2上,y=﹣3n+12,D(﹣3n,﹣3n+12);②∵C(﹣3nn),D(﹣3n,﹣3n+12),CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,∵矩形CDEF的面积为60,S矩形CDEFCFCD=|3n|×|﹣4n+12|=48,解得n=﹣1或n=﹣4,n=﹣1时,﹣3n=3,故C(3,﹣1),n=4时,﹣3n=1﹣12,故C(﹣12,4).综上所述,点C的坐标为:(3,﹣1)或C(﹣12,4).【点睛】本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程是解题关键.3、该水杯调整后的售价为每个22元.【分析】设该水杯调整后的售价为每个x元,等量关系每个利润×销售水杯个数=总利润,列方程得,解方程即可.【详解】解:设该水杯调整后的售价为每个x元,根据题意得:整理得因式分解得解得经检验都是原方程的解,为尽快减少库存,答该水杯调整后的售价为每个22元.【点睛】本题考查列一元二次方程解应用题,掌握列一元二次方程解应用题的方法与步骤,抓住等量关系每个利润×销售水杯个数=总利润列方程是解题关键.4、【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用因式分解法解一元二次方程求出a的值,继而选择任意一个a的值代入计算即可.【详解】解: ÷(+3 += ÷= = = 2-7+12=0=0                                                   = 0,= 又∵ ∴当时,原式【点睛】本题主要考查分式的化简求值和解一元二次方程,解题的关键是掌握分式的混合运算顺序和运算法则及因式分解法解一元二次方程.5、(1);(2);(3);(4)【分析】(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,(3)利用配方法解题;(4)利用提公因式法结合整体思想解题.【详解】解:(1)(2)(3)(4)【点睛】本题考查实数的混合运算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键. 

    相关试卷

    北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业:

    这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了如图,某学校有一块长35米,已知方程的两根分别为m等内容,欢迎下载使用。

    初中第十六章 一元二次方程综合与测试课后作业题:

    这是一份初中第十六章 一元二次方程综合与测试课后作业题,共15页。试卷主要包含了方程(x-1)2 = 0的根是,下列方程中是一元二次方程的是,用配方法解方程,则方程可变形为,一元二次方程的根的情况是,股市规定等内容,欢迎下载使用。

    2021学年第十六章 一元二次方程综合与测试精练:

    这是一份2021学年第十六章 一元二次方程综合与测试精练,共16页。试卷主要包含了把方程化成.,一元二次方程的解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map