初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题
展开这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共17页。试卷主要包含了一元二次方程的根的情况是,若a是方程的一个根,则的值为,已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程是一元二次方程的是( )
A. B.
C. D.
2、下列命题中,逆命题不正确的是( )
A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0
B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
C.全等三角形对应角相等
D.直角三角形的两条直角边的平方和等于斜边的平方
3、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.4
4、一元二次方程的根的情况是( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
5、一元二次方程2x2 - 1 = 6x化成一般形式后,常数项是 - 1,一次项系数是( )
A.- 2 B.- 6 C.2 D.6
6、某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.
A.8 B.9 C.10 D.11
7、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )
A. B.12 C. D.或
8、若a是方程的一个根,则的值为( )
A.2020 B. C.2022 D.
9、已知关于x的一元二次方程x2﹣(2m+3)x+m2=0有两根α,β.若=1,则m的值为( )
A.3 B.﹣1 C.3或﹣1 D.
10、已知方程的两根分别为m、n,则的值为( )
A.1 B. C.2021 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、现规定一种新的运算:,当时,则的值为____.
2、若关于x的一元二次方程x2﹣2x+m=0有两个相等的实数根,那么m=_____.
3、若(m+1)xm(m-2) -1+2mx-1=0是关于x的一元二次方程,则m的值是________.
4、若关于x,y的方程组有唯一解,则k的值是 _____.
5、若关于x的一元二次方程x2-2x+m=0有一个根为1,则m的值为_______.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:x2﹣2x=2(x+1).
2、在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在边AB上(不与点A,B重合),将△ANM绕点M逆时针旋转90°得到△BPM.
问:△BPN的面积能否等于3,请说明理由.
3、解方程:
(1)2(x﹣1)2﹣16=0;
(2)x2+5x+7=3x+11.
4、某公司自主研发一款健康的产品———燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.
(1)求该饮品的售价;
(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.
5、某种服装,平均每天可以销售20件,每件赢利44元.在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件.
(1)如果每件降价x元,则每天可以销售 件服装;(用含x的代数式表示)
(2)如果商家每天要获得利润1600元.则每件服装应降价多少元;
-参考答案-
一、单选题
1、C
【分析】
判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
【详解】
A.有两个未知数,错误;
B.不是整式方程,错误;
C.符合条件;
D.化简以后为,不是二次,错误;
故选:C.
【点睛】
本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.
2、C
【分析】
分别写出各个命题的逆命题,然后判断正误即可.
【详解】
解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;
B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;
C.逆命题为:对应角相等的两三角形全等,错误,符合题意;
D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.
故选:C
【点睛】
本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.
3、D
【分析】
先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.
【详解】
解:
,
,
,故甲出现错误;
即
或 故乙出现了错误;
而丙解方程时,移项没有改变符号,丁出现了计算错误;
所以出现错误的人数是4人,
故选D
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.
4、D
【分析】
先求出Δ的值,再判断出其符号即可.
【详解】
解:∵
∴Δ=b2−4ac=12−4×1×(-3)=13>0,
∴方程有两个不相等的实数根.
故选:D.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac的关系是解答此题的关键.
5、B
【分析】
先把一元二次方程化为一般形式,即可得出一次项系数.
【详解】
∵一元二次方程化为一般形式,
∴一次项系数是.
故选:B.
【点睛】
本题考查一元二次方程的相关概念,一元二次方程一般形式:,其中为二次项系数,为一次项系数,为常数项.
6、A
【分析】
设该校八年级有x个班级,利用比赛的总场次数=参赛的班级数×(参赛的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【详解】
解:设该校八年级有x个班级,
依题意得:x(x﹣1)=28,
整理得:x2﹣x﹣56=0,
解得:x1=8,x2=﹣7(不合题意,舍去).
故选:A.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
7、D
【分析】
先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.
【详解】
∵,
∴(x-2)(x-5)=0,
∴
∴另一边长为=或=,
∴矩形的面积为2×=或5×=5,
故选D.
【点睛】
本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.
8、C
【分析】
先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.
【详解】
解:是关于的方程的一个根,
,
,
,
.
故选:C.
【点睛】
本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.
9、A
【分析】
先利用根的判别式得到m≥,再根据根与系数的关系得α+β=2m+3,αβ=m2,则2m+3=m2,然后解关于m的方程,最后利用m的范围确定m的值.
【详解】
解:根据题意得Δ=(2m+3)2﹣4m2≥0,
解得m≥,
根据根与系数的关系得α+β=2m+3,αβ=m2,
∵=1,
∴α+β=αβ,即2m+3=m2,
整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,
∵m≥,
∴m的值为3.
故选:A.
【点睛】
本题考查的是一元二次方程根的判别式,根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,是解答此题的关键.
10、B
【分析】
由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.
【详解】
∵方程x2﹣2021x+1=0的两根分别为m,n,
∴mn=1,m2﹣2021m+1=0,
∴m2﹣2021m=﹣1,
∴m2﹣=﹣1,
故选:B.
【点睛】
本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.
二、填空题
1、2或3或2
【分析】
根据新定义运算把原式转化成一元二次方程,解方程即可.
【详解】
解:由可得,;
,
,
,
解得,;
故答案为:2或3.
【点睛】
本题考查了新定义运算和解一元二次方程,解题关键是根据题意把原式转化为一元二次方程.
2、1
【分析】
由题意根据判别式的意义得到Δ=(﹣2)2﹣4×1×m=0,然后求解关于m的方程即可.
【详解】
解:根据题意得Δ=(﹣2)2﹣4×1×m=0,
解得m=1.
故答案为:1.
【点睛】
本题考查根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
3、3
【分析】
本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.
【详解】
解:∵是关于x的一元二次方程,
∴,即,
解得m=3.
故答案为:3.
【点睛】
本题主要考查了一元二次方程的定义,解一元二次方程,解题的关键在于熟知一元二次方程的定义.
4、-1或3或-1
【分析】
把①代入②,得到关于x的一元二次方程,根据判别式为0时方程有两个相等的实根,列出方程求出k即可.
【详解】
解:
把①代入②得,kx-1=x2+x,
整理得,x2+(1-k)x+1=0
使方程有唯一解,判别式为0,
(1-k)2-4=0,
解得k1=-1,k2=3.
故答案为:-1或3
【点睛】
本题考查的是二元二次方程的解的判断,步骤是把方程组通过代入法化为一元二次方程,然后根据一元二次方程根的判别式进行判断.
5、
【分析】
根据关于x的方程x2-2x+m=0的一个根是1,将x=1代入可以得到m的值,本题得以解决.
【详解】
解:∵关于x的方程x2-2x+m=0的一个根是1,
∴1-2+m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.
三、解答题
1、
【分析】
方程先整理成一般形式,再根据公式法求解即可;
【详解】
解:原方程可整理为,
∴方程的解,
∴.
【点睛】
本题考查了一元二次方程的解法,熟练掌握一元二次方程的求根公式是解题的关键.
2、△BPN的面积不能等于3,理由见解析
【分析】
如图,根据等腰直角三角形的性质和旋转性质得△BPM为△ANM绕点M逆时针旋转90°得到的,设AN=BP=x,则BN=4-x,连接NP,根据直角三角形的面积公式得到关于x的一元二次方程,然后求解即可得出结论.
【详解】
解:如图,∵在△ABC中,AB=BC,∠ABC=90°,M是AC的中点,
∴AM=BM,BM⊥AC,∠A=∠MBC=45°,
由旋转得∠NMP=90°,
∴∠AMN+∠NMB=∠NMB+∠BMP,即∠AMN=∠BMP,
∴△ANM≌△BPM(ASA),
∴△BPM为△ANM绕点M逆时针旋转90°得到的,
∴AN=BP,
设AN=BP=x,则BN=4-x,连接NP,
假设△BPN的面积能否等于3,则x(4-x)=3,
∴x2-4x+6=0,
∵△=42-4×1×6=-8<0,
∴该方程无实数解,
∴△BPN的面积不能等于3,
【点睛】
本题考查等腰三角形的性质、直角三角形斜边上的中线性质、旋转性质、全等三角形的判定与性质、等角的余角相等、三角形的面积公式、一元二次方程的应用,熟练掌握相关知识的联系与运用,证明△ANM≌△BPM是解答的关键.
3、(1)x1=1+2,x2=1﹣2;(2)x1=﹣1+,x2=﹣1﹣.
【分析】
(1)利用直接开平方法求出方程的解即可;
(2)利用配方法求出方程的解即可.
【详解】
解:(1)整理,得2(x﹣1)2=16,
(x﹣1)2=8,
∴x﹣1=,
∴x1=1+2,x2=1﹣2;
(2)整理,得x2+2x=4,
配方,得x2+2x+1=4+1,即(x+1)2=5,
解得:
【点睛】
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
4、(1)该商品的售价为30元/件;(2)该店每月的捐款金额为270元.
【分析】
(1)根据总利润=每杯饮品的利润×销售数量,即可得出关于x的一元二次方程,解之再根据题意取舍即可得出结论;
(2)根据每月的捐款金额=1×每天销售的数量×30,即可得出结论.
【详解】
解:(1)∵该饮品的售价为x元/杯(20≤x≤40),且当售价是40元/杯时,每天可售出该饮品60杯,且售价每降低1元,就会多售出3杯,
∴每天能售出该饮品的杯数为60+3(40-x)=(180-3x)杯.
依题意,得:(x-20)(180-3x)-300=600,
整理,得:x2-80x+1500=0,
解得:x1=30,x2=50.
∵物价局规定每杯饮品的利润不得高于成本价的80%,
∴x≤40×80%,即x≤32,
x=50(不合题意,舍去).
答:该商品的售价为30元/件;
(2)1×(180-3×30)×30=270(元).
答:该店每月的捐款金额为270元.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
5、(1)(20+5x);(2)4元
【分析】
(1)根据“每件降价1元,则每天可多售5件”可以列出代数式;
(2)根据关系式:每件服装的盈利×(原来的销售量+增加的销售量)=1600,计算得到结果即可.
【详解】
(1)由题意得:每天可以销售服装的件数为:(20+5x);
(2)由题意得:
(44﹣x)(20+5x)=1600·
解得,x1=4,x2=36
∵36>10,
∴x2=36(不合题意,舍去),
答:每件服装应降价4元.
【点睛】
本题考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.
相关试卷
这是一份2020-2021学年第十六章 一元二次方程综合与测试课时训练,共16页。试卷主要包含了方程x2﹣x=0的解是,下列方程中是一元二次方程的是,已知关于x的一元二次方程x2﹣,若方程的一个根为,则的值是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了一元二次方程的二次项系数,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共17页。试卷主要包含了小亮,下列方程中是一元二次方程的是,一元二次方程的根的情况是等内容,欢迎下载使用。