北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了一元二次方程的解是.,若a是方程的一个根,则的值为等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )A.5 B.3 C.-3 D.-42、下列所给方程中,没有实数根的是( )A. B.C. D.3、一元二次方程的二次项系数、一次项系数、常数项分别是( )A.2,1,5 B.2,1,-5 C.2,0,-5 D.2,0,54、若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0(a≠0)的一个根,则2021﹣2a+2b的值等于( )A.2015 B.2017 C.2019 D.20225、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-26、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.7、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.A.4 B.5 C.6 D.78、一元二次方程的解是( ).A.5 B.-2 C.-5或2 D.5或-29、若a是方程的一个根,则的值为( )A.2020 B. C.2022 D.10、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一长为32m、宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化.若已知绿化面积为540㎡,则道路的宽为__________m.2、解一元二次方程x2﹣7x=0的最佳方法是 _____.3、某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x,则根据题意可列方程 _____.4、若m是一元二次方程2x2+3x﹣1=0的一个根,则4m2+6m﹣2021=________.5、疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,设二、三两个月新注册用户每月平均增长率是x,根据题意,可列方程为___________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(配方法)(2)(公式法)2、解下列方程:(1);(2).3、为了让我们的小朋友们有更好的学习环境,我校2020年投资110万元改造硬件设施,计划以后每年以相同的增长率进行投资,到2022年投资额将达到185.9万元.(1)求我校改造硬件设施投资额的年平均增长率;(2)从2020年到2022年,这三年我校将总共投资多少万元?4、解方程:(1) 2x2-4x-3=0.(2)3x(x-1)=2-2x.5、2021年某市轨道交通1号线经过10月份的试运营,于11月正式开通运营.10月份客运量为120万人次,12月份客运量为172.8万人次(1)求1号线客运量的月平均增长率;(2)按照客运量这样的月增长率,预计1号线在2022年1月份的客运量能否突破200万人次. -参考答案-一、单选题1、A【分析】根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.【详解】解:∵一元二次方程的两根分别为m,n,∴,,∴,故选:A.【点睛】本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.2、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.3、B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【详解】解:∵一元二次方程2x2+x-5=0,∴二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).4、B【分析】根据一元二次方程根的定义将代入方程ax2+bx﹣2=0可得,即,整体代入到代数式中求解即可,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】解:将代入方程ax2+bx﹣2=0可得,即2021﹣2a+2b=故选B【点睛】本题考查了一元二次方程的解,代数式求值,整体代入是解题的关键.5、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.6、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.7、C【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可.【详解】解:有x个球队参加比赛,根据题意可列方程为:x(x1)=30,解得:或(舍去);∴共有6支队伍参赛;故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8、D【分析】直接把原方程化为两个一次方程或,再解一次方程即可.【详解】解: 或 解得: 故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.9、C【分析】先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,,,,.故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.10、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.二、填空题1、2【分析】把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32-x)m和(20-x)m,根据矩形的面积公式,列出关于道路宽的方程求解.【详解】解:设道路的宽是xm,(32−x)(20−x)=540,整理得,因式分解得,解得:x1=2,x2=50(舍),答:道路的宽是2m.故答案为2.【点睛】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.2、因式分解法【分析】将一元二次方程先提公因式然后计算即可.【详解】解:一元二次方程,即,解得:,,∴应采用因式分解法,故答案为:因式分解法.【点睛】题目主要考查一元二次方程的因式分解法,熟练掌握因式分解法是解题关键.3、64(1+x)2=81【分析】如果每月的增长率都为x,根据某旅游景点6月份共接待游客64万人次,则7月份接待游客64(1+x)万人次,8月份共接待游客64(1+x)2万人次,根据题意可列出方程.【详解】解:设每月的增长率都为x,列方程得64(1+x)2=81.故答案为:64(1+x)2=81.【点睛】本题考查了增长率问题,理解题意,用含x式子表示出8月份游客人次是解题关键.4、﹣2019【分析】根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.【详解】解:∵m是一元二次方程2x2+3x1=0的一个根,∴2m2+3m1=0,整理得,2m2+3m=1,∴4m2+6m2021=2(2m2+3m)2021=2×12021=2019.故答案为:﹣2019.【点睛】本题考查了一元二次方程的解,利用整体思想求出2m2+3m的值,然后整体代入是解题的关键.5、【分析】设二、三两个月新注册用户每月平均增长率是x,根据该买菜APP今年一月份及三月份新注册用户人数,即可得出关于x的一元二次方程.【详解】解:设二、三两个月新注册用户每月平均增长率是x,
依题意,得:200(1+x)2=338,故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题1、(1);(2)【分析】(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;(2)利用公式法直接代入求出即可.【详解】(1)(2)∴∴【点睛】本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.2、(1);(2)【分析】(1)直接根据因式分解法解一元二次方程即可;(2)先将方程化为一般形式,进而根据因式分解法解一元二次方程即可.【详解】解:(1)解得(2)即解得【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.3、(1)我校改造硬件设施投资额的年平均增长率为30%;(2)从2020年到2022年,这三年我校将总共投资438.9万元【分析】(1)设我校改造硬件设施投资额的年平均增长率为x,利用2022年投资额=2020年投资额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用这三年我校总共投资的金额=2020年投资额+2020年投资额×(1+年平均增长率)+2022年投资额,即可求出结论.【详解】解:(1)设我校改造硬件设施投资额的年平均增长率为x,依题意得:110(1+x)2=185.9,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).答:我校改造硬件设施投资额的年平均增长率为30%.(2)110+110×(1+30%)+185.9=110+143+185.9=438.9(万元).答:从2020年到2022年,这三年我校将总共投资438.9万元【点睛】本题考查了一元二次方程的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列式计算.4、(1)x1=1+,x2=1-;(2)x1=1,【分析】(1)根据公式法解一元二次方程即可;(2)根据因式分解的方法解一元二次方程【详解】解:(1)2x2-4x-3=0a=2,b=-4,c=-3,△=16+24=40>0,,∴x1=1+,x2=1-(2)3x(x-1)+2(x-1)=0,(x-1)(3x+2)=0, x-1=0或3x+2=0, 所以x1=1,【点睛】本题考查了解一元二次方程,掌握解一元二次方程的解法是解题的关键.5、(1)1号线客运量的月平均增长率为20%;(2)预计1号线在2022年1月份的客运量能突破200万人次.【分析】(1)设1号线客运量的月平均增长率为x,列出,求解即可;(2)按照客运量这样的月增长率,在2022年1月份的客运量为,计算出结果比较即可.【详解】解:(1)设1号线客运量的月平均增长率为x,则解得(舍去)(2)按照客运量这样的月增长率,1号线在2022年1月份的客运量为,(万人次)(万人次)答:(1)1号线客运量的月平均增长率为20%.(2)预计1号线在2022年1月份的客运量能突破200万人次.【点睛】本题考查了一元二次方程的应用,解题的关键是根据题意列出相应的等式.
相关试卷
这是一份初中第十六章 一元二次方程综合与测试精练,共15页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。
这是一份数学第十六章 一元二次方程综合与测试课后复习题,共15页。
这是一份数学第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了一元二次方程的根的情况是,用配方法解方程,则方程可变形为,若a是方程的一个根,则的值为,下列事件为必然事件的是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。